If you made any changes in Pure, your changes will be visible here soon.

Fingerprint Fingerprint is based on mining the text of the experts' scientific documents to create an index of weighted terms, which defines the key subjects of each individual researcher.

  • 9 Similar Profiles
Kähler Mathematics
Ricci Flow Mathematics
Kähler-Einstein Metric Mathematics
Kähler Metrics Mathematics
Metric Mathematics
Chern Classes Mathematics
Divisor Mathematics
Kähler Manifold Mathematics

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Projects 2007 2020

Ricci Flow
Metric
Singularity
Continue
Complex Monge-Ampère Equation
Geometric Flows
Singularity
Metric
Ricci Flow
Minimal Model
Complex Monge-Ampère Equation
Geometric Flows
Ricci Flow
Algebraic Geometry
Physics
Ricci Flow
Metric
Constant Scalar Curvature
Moment Map
Einstein Metrics

Research Output 2005 2018

  • 518 Citations
  • 13 h-Index
  • 34 Article
  • 1 Chapter
  • 1 Conference contribution
2 Citations

Connecting toric manifolds by conical Kähler–Einstein metrics

Datar, V., Guo, B., Song, J. & Wang, X., Jan 7 2018, In : Advances in Mathematics. 323, p. 38-83 46 p.

Rutgers, The State University

Research output: Contribution to journalArticle

Kähler-Einstein Metric
Kähler
Ricci Soliton
Albert Einstein
Lower bound
16 Citations

The Kähler–Ricci flow through singularities

Song, J. & Tian, G., Feb 1 2017, In : Inventiones Mathematicae. 207, 2, p. 519-595 77 p.

Rutgers, The State University, Princeton University

Research output: Contribution to journalArticle

Ricci Flow
Kähler
Singularity
Minimal Model
Projective Variety
4 Citations

Bounding scalar curvature for global solutions of the Kähler-Ricci flow

Song, J. & Tian, G., Jun 1 2016, In : American Journal of Mathematics. 138, 3, p. 683-695 13 p.

Princeton University, Rutgers, The State University

Research output: Contribution to journalArticle

Ricci Flow
Scalar Curvature
Kähler
Global Solution
Kähler Manifold
2 Citations

Geometric Convergence of the Kähler-Ricci Flow on Complex Surfaces of General Type

Guo, B., Song, J. & Weinkove, B., Jan 1 2016, In : International Mathematics Research Notices. 2016, 18, p. 5652-5669 18 p.

Rutgers, The State University

Research output: Contribution to journalArticle

Geometric Convergence
Surfaces of General Type
Ricci Flow
Orbifold
Kähler

On Feldman-Ilmanen-Knopf's conjecture for the blow-up behavior of the Kähler Ricci flow

Guo, B. & Song, J., Jan 1 2016, In : Mathematical Research Letters. 23, 6, p. 1681-1719 39 p.

Rutgers, The State University

Research output: Contribution to journalArticle

Ricci Flow
Kähler
Blow-up
Ricci Soliton
Kähler Metrics