Projects per year
Fingerprint Fingerprint is based on mining the text of the experts' scientific documents to create an index of weighted terms, which defines the key subjects of each individual researcher.
- 9 Similar Profiles
Kähler
Mathematics
Ricci Flow
Mathematics
Kähler-Einstein Metric
Mathematics
Kähler Metrics
Mathematics
Metric
Mathematics
Chern Classes
Mathematics
Divisor
Mathematics
Kähler Manifold
Mathematics
Network
Recent external collaboration on country level. Dive into details by clicking on the dots.
Projects 2007 2020
Canonical Metrics, The Kahler-Ricci Flow, And Their Applica1Ons
National Science Foundation (NSF)
9/1/17 → 8/31/20
Project: Research project
Ricci Flow
Metric
Singularity
Continue
Complex Monge-Ampère Equation
Canonical Metrics, Geometric Flows And Formation Of Singularities
National Science Foundation (NSF)
8/1/14 → 7/31/17
Project: Research project
Geometric Flows
Singularity
Metric
Ricci Flow
Minimal Model
Career: Canonical Metrics, Complex Monge-Ampere Equations And Geometric Flows
National Science Foundation (NSF)
8/15/09 → 7/31/14
Project: Research project
Complex Monge-Ampère Equation
Geometric Flows
Ricci Flow
Algebraic Geometry
Physics
Nonlinear Geo Metric Equations Of Monge-Ampere Type And Canonical Metrics
National Science Foundation (NSF)
9/10/07 → 6/30/10
Project: Research project
Ricci Flow
Metric
Constant Scalar Curvature
Moment Map
Einstein Metrics
Research Output 2005 2018
Connecting toric manifolds by conical Kähler–Einstein metrics
Datar, V., Guo, B., Song, J. & Wang, X., Jan 7 2018, In : Advances in Mathematics. 323, p. 38-83 46 p.Research output: Contribution to journal › Article
Kähler-Einstein Metric
Kähler
Ricci Soliton
Albert Einstein
Lower bound
The Kähler–Ricci flow through singularities
Song, J. & Tian, G., Feb 1 2017, In : Inventiones Mathematicae. 207, 2, p. 519-595 77 p.Rutgers, The State University, Princeton University
Research output: Contribution to journal › Article
Ricci Flow
Kähler
Singularity
Minimal Model
Projective Variety
Bounding scalar curvature for global solutions of the Kähler-Ricci flow
Song, J. & Tian, G., Jun 1 2016, In : American Journal of Mathematics. 138, 3, p. 683-695 13 p.Princeton University, Rutgers, The State University
Research output: Contribution to journal › Article
Ricci Flow
Scalar Curvature
Kähler
Global Solution
Kähler Manifold
Geometric Convergence of the Kähler-Ricci Flow on Complex Surfaces of General Type
Guo, B., Song, J. & Weinkove, B., Jan 1 2016, In : International Mathematics Research Notices. 2016, 18, p. 5652-5669 18 p.Research output: Contribution to journal › Article
Geometric Convergence
Surfaces of General Type
Ricci Flow
Orbifold
Kähler
On Feldman-Ilmanen-Knopf's conjecture for the blow-up behavior of the Kähler Ricci flow
Guo, B. & Song, J., Jan 1 2016, In : Mathematical Research Letters. 23, 6, p. 1681-1719 39 p.Research output: Contribution to journal › Article
Ricci Flow
Kähler
Blow-up
Ricci Soliton
Kähler Metrics