Project Details
Description
Abstract
Cryptococcosis is an AIDS-defining illness and the most common fungal disease in HIV-infected
patients. Most cases of fungal meningitis in AIDS patients are due to infections with the globally distributed
fungal pathogen Cryptococcus neoformans. Recent estimates indicate that C.neoformans causes > 180,000
deaths annually and is responsible for 15% of AIDS-related deaths. Thus, there is a significant, unmet
medical need to develop new treatments against this life-threatening fungal infection. A better understanding of
host and pathogen factors that shape immunity against Cryptococcus can inform the development of much
needed preventative vaccination strategies and immune-based therapies. In recently published studies, we
have uncovered that F-box protein 1 (Fbp1) acts as a regulator of C. neoformans immunogenicity. Fbp1 is a
subunit of the SCFFbp1 E3 ligase complex, a key component of the ubiquitin-mediated proteolytic pathway
that targets specific proteins for degradation. The C. neoformans mutant strain lacking Fbp1 (fbp1D) is
hypovirulent in vivo without affecting the expression of known virulence factors, indicating that Fbp1 likely
regulates a novel virulence determinant. Pulmonary infection with fbp1D induced the robust recruitment of
CCR2+ monocytes and the activation of enhanced CD8+ and CD4+ T cell responses. We uncovered that
these enhanced innate and adaptive immune responses cooperate to control C. neoformans infection in the
lung and are both required for the long-term survival of the host. Moreover, heat-killed preparations of the
fbp1D mutant (HK-fbp1D) acted as an effective vaccine and protected mice of two different genetic
backgrounds against infection with the parental, highly virulent strain H99. In this application, we propose a
series of collaborative studies to decipher how Fbp1 regulates the activation of anti-Cryptococcus immunity
and to further exploit the potential of fbp1D as a novel vaccine strain against cryptococcosis. The central
hypothesis of our work is that Fbp1 regulates the abundance of specific target proteins, which in turn shape
the immunogenicity of C. neoformans. Our overarching goal is to systematically decipher the immune
mechanisms of vaccine-induced protection and to identify and validate specific Fbp1-regulated targets that
shape the immunogenicity of C. neoformans. We will utilize our combined expertise to test our hypothesis in
three independent, but closely related Specific Aims: 1) Decipher the distinct contributions of innate immune
cell populations to protection from infection with fbp1D and to HK-fbp1D vaccine-induced protection, 2)
Uncover the molecular mechanisms of IFN-g-mediated vaccine protection, and 3) Identify and validate Fbp1-
regulated targets that influence host immunity. In aggregate, these studies will advance our understanding of
host-pathogen interactions involved in the immune regulation by Cryptococcus and may guide the design of
vaccines and inhibitors of specific C. neoformans factors to enhance host-mediated control of infection.
Status | Finished |
---|---|
Effective start/end date | 3/5/19 → 2/29/24 |
Funding
- National Institute of Allergy and Infectious Diseases: $749,786.00
- National Institute of Allergy and Infectious Diseases: $71,363.00
- National Institute of Allergy and Infectious Diseases: $749,786.00
- National Institute of Allergy and Infectious Diseases: $48,620.00
- National Institute of Allergy and Infectious Diseases: $22,743.00
- National Institute of Allergy and Infectious Diseases: $749,786.00
- National Institute of Allergy and Infectious Diseases: $749,786.00
- National Institute of Allergy and Infectious Diseases: $749,562.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.