Mitochondria and calcium signaling in skeletal muscle

  • Shirokova, Natalia (PI)

Project Details

Description

DESCRIPTION (provided by applicant): Ca2+ controls numerous cellular processes in skeletal muscle and alterations in Ca2+ homeostasis are associated with human diseases such as Duchenne Muscular Dystrophy (DMD), Malignant Hyperthermia (MH) and Central Core Disease (CCD). Defining the molecular mechanisms regulating intracellular Ca2+ signaling is a crucial step for developing new therapeutic interventions in these myopathies. The release of Ca2+ from sarcoplasmic reticulum (SR) via Ca2+ release channels (ryanodine receptors, RyRs) is a key step in skeletal muscle excitation-contraction coupling (ECC). It is triggered through a direct interaction of the plasmalemmal voltage sensors with RyRs and it is thought to be amplified by Ca2+-induced Ca2+ release (CICR), manifest as Ca2+ sparks. However, mature mammalian muscle does not display Ca2+ sparks during physiological ECC but it develops spontaneous spark activity under various pathophysiological conditions. The molecular events that lead to Ca2+ spark generation in mammalian muscle are unknown. Understanding these mechanisms is a prerequisite to prevent changes in Ca2+ homeostasis associated with a number of human muscle diseases. Our data suggest that reactive oxygen and nitrogen species (ROS/RNS) and mitochondria are key regulators of intracellular Ca2+ signaling in skeletal muscle. They have led us to the following hypotheses: 1). Under physiological conditions, the appearance of sparks is suppressed by reduced cytosolic environment, which maintains a low activity of RyR1, and by mitochondrial Ca2+ uptake. 2). Increased cytosolic Ca2+ levels promote ROS/RNS production through mitochondrial Ca2+ overload and/or stimulation of ROS/RNS production by other cellular sources. 3). ROS/RNS stimulate spark production by enhancing the Ca2+ release activity of RyR1 and/or by inhibiting mitochondrial Ca2+ uptake. 4). Cytosolic Ca2+ levels are elevated in MH due to SR Ca2+ leak, and in DMD due to increased Ca2+ influx. In both disorders, the outcome of increased cytosolic Ca2+ is: a) enhanced ROS/RNS production b) oxidative modification of RyR1, c) enhanced Ca2+ sensitivity of the modified RyR1 and d) the appearance of Ca2+ sparks. To test these hypotheses, we will carry out the following Specific Aims using electrophysiological methods and state-of-the-art imaging techniques (single and two-photon confocal imaging, digital photometry, UV-laser flash photolysis of caged compounds). We propose to: 1). Determine the mechanisms connecting cytosolic Ca2+ signals, mitochondrial Ca2+ uptake and ROS/RNS generation in muscle under physiological conditions. 2). Define how altered ROS/RNS generation affect cellular Ca2+ homeostasis in muscle from MH-susceptible and mdx mice (a mice model of DMD).
StatusFinished
Effective start/end date9/19/088/31/14

Funding

  • National Institute of Arthritis and Musculoskeletal and Skin Diseases: $330,880.00
  • National Institute of Arthritis and Musculoskeletal and Skin Diseases: $101,762.00
  • National Institute of Arthritis and Musculoskeletal and Skin Diseases: $326,177.00
  • National Institute of Arthritis and Musculoskeletal and Skin Diseases: $224,415.00
  • National Institute of Arthritis and Musculoskeletal and Skin Diseases: $339,768.00
  • National Institute of Arthritis and Musculoskeletal and Skin Diseases: $343,200.00

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.