A genetic mechanism for Tibetan high-altitude adaptation

Felipe R. Lorenzo, Chad Huff, Mikko Myllymäki, Benjamin Olenchock, Sabina Swierczek, Tsewang Tashi, Victor Gordeuk, Tana Wuren, Ri Li Ge, Donald A. McClain, Tahsin M. Khan, Parvaiz A. Koul, Prasenjit Guchhait, Mohamed E. Salama, Jinchuan Xing, Gregg L. Semenza, Ella Liberzon, Andrew Wilson, Tatum S. Simonson, Lynn B. JordeWilliam G. Kaelin, Peppi Koivunen, Josef T. Prchal

Research output: Contribution to journalArticle

144 Citations (Scopus)

Abstract

Tibetans do not exhibit increased hemoglobin concentration at high altitude. We describe a high-frequency missense mutation in the EGLN1 gene, which encodes prolyl hydroxylase 2 (PHD2), that contributes to this adaptive response. We show that a variant in EGLN1, c.[12C>G; 380G>C], contributes functionally to the Tibetan high-altitude phenotype. PHD2 triggers the degradation of hypoxia-inducible factors (HIFs), which mediate many physiological responses to hypoxia, including erythropoiesis. The PHD2 p.[Asp4Glu; Cys127Ser] variant exhibits a lower K m value for oxygen, suggesting that it promotes increased HIF degradation under hypoxic conditions. Whereas hypoxia stimulates the proliferation of wild-type erythroid progenitors, the proliferation of progenitors with the c.[12C>G; 380G>C] mutation in EGLN1 is significantly impaired under hypoxic culture conditions. We show that the c.[12C>G; 380G>C] mutation originated ∼8,000 years ago on the same haplotype previously associated with adaptation to high altitude. The c.[12C>G; 380G>C] mutation abrogates hypoxia-induced and HIF-mediated augmentation of erythropoiesis, which provides a molecular mechanism for the observed protection of Tibetans from polycythemia at high altitude.

Original languageEnglish (US)
Pages (from-to)951-956
Number of pages6
JournalNature genetics
Volume46
Issue number9
DOIs
StatePublished - Jan 1 2014

Fingerprint

Prolyl Hydroxylases
Erythropoiesis
Mutation
Polycythemia
Missense Mutation
Haplotypes
Hypoxia
Hemoglobins
Oxygen
Phenotype
Genes

All Science Journal Classification (ASJC) codes

  • Genetics

Cite this

Lorenzo, F. R., Huff, C., Myllymäki, M., Olenchock, B., Swierczek, S., Tashi, T., ... Prchal, J. T. (2014). A genetic mechanism for Tibetan high-altitude adaptation. Nature genetics, 46(9), 951-956. https://doi.org/10.1038/ng.3067
Lorenzo, Felipe R. ; Huff, Chad ; Myllymäki, Mikko ; Olenchock, Benjamin ; Swierczek, Sabina ; Tashi, Tsewang ; Gordeuk, Victor ; Wuren, Tana ; Ge, Ri Li ; McClain, Donald A. ; Khan, Tahsin M. ; Koul, Parvaiz A. ; Guchhait, Prasenjit ; Salama, Mohamed E. ; Xing, Jinchuan ; Semenza, Gregg L. ; Liberzon, Ella ; Wilson, Andrew ; Simonson, Tatum S. ; Jorde, Lynn B. ; Kaelin, William G. ; Koivunen, Peppi ; Prchal, Josef T. / A genetic mechanism for Tibetan high-altitude adaptation. In: Nature genetics. 2014 ; Vol. 46, No. 9. pp. 951-956.
@article{17d0302b3f944c439d87013940a8b680,
title = "A genetic mechanism for Tibetan high-altitude adaptation",
abstract = "Tibetans do not exhibit increased hemoglobin concentration at high altitude. We describe a high-frequency missense mutation in the EGLN1 gene, which encodes prolyl hydroxylase 2 (PHD2), that contributes to this adaptive response. We show that a variant in EGLN1, c.[12C>G; 380G>C], contributes functionally to the Tibetan high-altitude phenotype. PHD2 triggers the degradation of hypoxia-inducible factors (HIFs), which mediate many physiological responses to hypoxia, including erythropoiesis. The PHD2 p.[Asp4Glu; Cys127Ser] variant exhibits a lower K m value for oxygen, suggesting that it promotes increased HIF degradation under hypoxic conditions. Whereas hypoxia stimulates the proliferation of wild-type erythroid progenitors, the proliferation of progenitors with the c.[12C>G; 380G>C] mutation in EGLN1 is significantly impaired under hypoxic culture conditions. We show that the c.[12C>G; 380G>C] mutation originated ∼8,000 years ago on the same haplotype previously associated with adaptation to high altitude. The c.[12C>G; 380G>C] mutation abrogates hypoxia-induced and HIF-mediated augmentation of erythropoiesis, which provides a molecular mechanism for the observed protection of Tibetans from polycythemia at high altitude.",
author = "Lorenzo, {Felipe R.} and Chad Huff and Mikko Myllym{\"a}ki and Benjamin Olenchock and Sabina Swierczek and Tsewang Tashi and Victor Gordeuk and Tana Wuren and Ge, {Ri Li} and McClain, {Donald A.} and Khan, {Tahsin M.} and Koul, {Parvaiz A.} and Prasenjit Guchhait and Salama, {Mohamed E.} and Jinchuan Xing and Semenza, {Gregg L.} and Ella Liberzon and Andrew Wilson and Simonson, {Tatum S.} and Jorde, {Lynn B.} and Kaelin, {William G.} and Peppi Koivunen and Prchal, {Josef T.}",
year = "2014",
month = "1",
day = "1",
doi = "https://doi.org/10.1038/ng.3067",
language = "English (US)",
volume = "46",
pages = "951--956",
journal = "Nature Genetics",
issn = "1061-4036",
publisher = "Nature Publishing Group",
number = "9",

}

Lorenzo, FR, Huff, C, Myllymäki, M, Olenchock, B, Swierczek, S, Tashi, T, Gordeuk, V, Wuren, T, Ge, RL, McClain, DA, Khan, TM, Koul, PA, Guchhait, P, Salama, ME, Xing, J, Semenza, GL, Liberzon, E, Wilson, A, Simonson, TS, Jorde, LB, Kaelin, WG, Koivunen, P & Prchal, JT 2014, 'A genetic mechanism for Tibetan high-altitude adaptation', Nature genetics, vol. 46, no. 9, pp. 951-956. https://doi.org/10.1038/ng.3067

A genetic mechanism for Tibetan high-altitude adaptation. / Lorenzo, Felipe R.; Huff, Chad; Myllymäki, Mikko; Olenchock, Benjamin; Swierczek, Sabina; Tashi, Tsewang; Gordeuk, Victor; Wuren, Tana; Ge, Ri Li; McClain, Donald A.; Khan, Tahsin M.; Koul, Parvaiz A.; Guchhait, Prasenjit; Salama, Mohamed E.; Xing, Jinchuan; Semenza, Gregg L.; Liberzon, Ella; Wilson, Andrew; Simonson, Tatum S.; Jorde, Lynn B.; Kaelin, William G.; Koivunen, Peppi; Prchal, Josef T.

In: Nature genetics, Vol. 46, No. 9, 01.01.2014, p. 951-956.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A genetic mechanism for Tibetan high-altitude adaptation

AU - Lorenzo, Felipe R.

AU - Huff, Chad

AU - Myllymäki, Mikko

AU - Olenchock, Benjamin

AU - Swierczek, Sabina

AU - Tashi, Tsewang

AU - Gordeuk, Victor

AU - Wuren, Tana

AU - Ge, Ri Li

AU - McClain, Donald A.

AU - Khan, Tahsin M.

AU - Koul, Parvaiz A.

AU - Guchhait, Prasenjit

AU - Salama, Mohamed E.

AU - Xing, Jinchuan

AU - Semenza, Gregg L.

AU - Liberzon, Ella

AU - Wilson, Andrew

AU - Simonson, Tatum S.

AU - Jorde, Lynn B.

AU - Kaelin, William G.

AU - Koivunen, Peppi

AU - Prchal, Josef T.

PY - 2014/1/1

Y1 - 2014/1/1

N2 - Tibetans do not exhibit increased hemoglobin concentration at high altitude. We describe a high-frequency missense mutation in the EGLN1 gene, which encodes prolyl hydroxylase 2 (PHD2), that contributes to this adaptive response. We show that a variant in EGLN1, c.[12C>G; 380G>C], contributes functionally to the Tibetan high-altitude phenotype. PHD2 triggers the degradation of hypoxia-inducible factors (HIFs), which mediate many physiological responses to hypoxia, including erythropoiesis. The PHD2 p.[Asp4Glu; Cys127Ser] variant exhibits a lower K m value for oxygen, suggesting that it promotes increased HIF degradation under hypoxic conditions. Whereas hypoxia stimulates the proliferation of wild-type erythroid progenitors, the proliferation of progenitors with the c.[12C>G; 380G>C] mutation in EGLN1 is significantly impaired under hypoxic culture conditions. We show that the c.[12C>G; 380G>C] mutation originated ∼8,000 years ago on the same haplotype previously associated with adaptation to high altitude. The c.[12C>G; 380G>C] mutation abrogates hypoxia-induced and HIF-mediated augmentation of erythropoiesis, which provides a molecular mechanism for the observed protection of Tibetans from polycythemia at high altitude.

AB - Tibetans do not exhibit increased hemoglobin concentration at high altitude. We describe a high-frequency missense mutation in the EGLN1 gene, which encodes prolyl hydroxylase 2 (PHD2), that contributes to this adaptive response. We show that a variant in EGLN1, c.[12C>G; 380G>C], contributes functionally to the Tibetan high-altitude phenotype. PHD2 triggers the degradation of hypoxia-inducible factors (HIFs), which mediate many physiological responses to hypoxia, including erythropoiesis. The PHD2 p.[Asp4Glu; Cys127Ser] variant exhibits a lower K m value for oxygen, suggesting that it promotes increased HIF degradation under hypoxic conditions. Whereas hypoxia stimulates the proliferation of wild-type erythroid progenitors, the proliferation of progenitors with the c.[12C>G; 380G>C] mutation in EGLN1 is significantly impaired under hypoxic culture conditions. We show that the c.[12C>G; 380G>C] mutation originated ∼8,000 years ago on the same haplotype previously associated with adaptation to high altitude. The c.[12C>G; 380G>C] mutation abrogates hypoxia-induced and HIF-mediated augmentation of erythropoiesis, which provides a molecular mechanism for the observed protection of Tibetans from polycythemia at high altitude.

UR - http://www.scopus.com/inward/record.url?scp=84922391897&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84922391897&partnerID=8YFLogxK

U2 - https://doi.org/10.1038/ng.3067

DO - https://doi.org/10.1038/ng.3067

M3 - Article

C2 - 25129147

VL - 46

SP - 951

EP - 956

JO - Nature Genetics

JF - Nature Genetics

SN - 1061-4036

IS - 9

ER -

Lorenzo FR, Huff C, Myllymäki M, Olenchock B, Swierczek S, Tashi T et al. A genetic mechanism for Tibetan high-altitude adaptation. Nature genetics. 2014 Jan 1;46(9):951-956. https://doi.org/10.1038/ng.3067