A location-sentiment-aware recommender system for both home-town and out-of-town users

Hao Wang, Yanmei Fu, Qinyong Wang, Hongzhi Yin, Changying Du, Hui Xiong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

37 Scopus citations

Abstract

Spatial item recommendation has become an important means to help people discover interesting locations, especially when people pay a visit to unfamiliar regions. Some current researches are focusing on modelling individual and collective geographical preferences for spatial item recommendation based on users' check-in records, but they fail to explore the phenomenon of user interest drift across geographical regions, i.e., users would show different interests when they travel to different regions. Besides, they ignore the influence of public comments for subsequent users' check-in behaviors. Specifically, it is intuitive that users would refuse to check in to a spatial item whose historical reviews seem negative overall, even though it might fit their interests. Therefore, it is necessary to recommend the right item to the right user at the right location. In this paper, we propose a latent probabilistic generative model called LSARS to mimic the decision-making process of users' check-in activities both in home-town and out-of-town scenarios by adapting to user interest drift and crowd sentiments, which can learn location-aware and sentiment-aware individual interests from the contents of spatial items and user reviews. Due to the sparsity of user activities in out-of-town regions, LSARS is further designed to incorporate the public preferences learned from local users' check-in behaviors. Finally, we deploy LSARS into two practical application scenes: spatial item recommendation and target user discovery. Extensive experiments on two large-scale location-based social networks (LBSNs) datasets show that LSARS achieves better performance than existing state-of-the-art methods.

Original languageEnglish (US)
Title of host publicationKDD 2017 - Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages1135-1143
Number of pages9
ISBN (Electronic)9781450348874
DOIs
StatePublished - Aug 13 2017
Event23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017 - Halifax, Canada
Duration: Aug 13 2017Aug 17 2017

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
VolumePart F129685

Conference

Conference23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017
Country/TerritoryCanada
CityHalifax
Period8/13/178/17/17

ASJC Scopus subject areas

  • Software
  • Information Systems

Keywords

  • Check-in behavior
  • Crowd sentiment
  • Recommendation
  • User interest drift

Fingerprint

Dive into the research topics of 'A location-sentiment-aware recommender system for both home-town and out-of-town users'. Together they form a unique fingerprint.

Cite this