TY - JOUR
T1 - A Semiconductive coordination network based on 2,3,6,7,10,11- hexakis(methylthio)triphenylene and BiCl3
AU - Xu, Zhengtao
AU - Li, Kunhao
AU - Fettinger, James C.
AU - Li, Jing
AU - King, Michael M.
PY - 2005/3
Y1 - 2005/3
N2 - The reaction of 2,3,6,7,10,11-hexakis(methylthio)triphenylene (1) with BiCl3 in benzene forms near-quantitatively the crystalline composite 1·BiCl3, which is an air stable semiconductor with an electronic band gap of 2.0 eV (diffuse reflectance data). The crystal structure of 1·BiCl3 [crystal data: C48H48S 12Cl6Bi2, triclinic, P1, a = 7.7535(3) Å, b = 13.8362(5) Å, c = 14.0188(5) Å, α = 107.763(1)°, β = 98.730(1)°, γ = 97.020(1)°, V = 1392.76(9) Å3, and Z = 1] features a composite one-dimensional BiCl 3 framework in which the Bi(III) center is chelated to the organic ligand. The chelation bonds facilitate the ligand-metal center interaction and generate substantial charge transfer phenomena. The ease of crystallization is ascribed to the relatively weak Bi(III)-Cl bonds that serve to connect the organic ligands and the similar crystalline packing motifs of the reactant (1) and the product (1·BiCl3). The synthesis of compound 1·BiCl3 indicates that semiconductive networks can be effectively accessed by linking electroactive organic ligands through intervening metal halide moieties. Compound 1·BiCl3 can also be made in a solvent-free solid state reaction.
AB - The reaction of 2,3,6,7,10,11-hexakis(methylthio)triphenylene (1) with BiCl3 in benzene forms near-quantitatively the crystalline composite 1·BiCl3, which is an air stable semiconductor with an electronic band gap of 2.0 eV (diffuse reflectance data). The crystal structure of 1·BiCl3 [crystal data: C48H48S 12Cl6Bi2, triclinic, P1, a = 7.7535(3) Å, b = 13.8362(5) Å, c = 14.0188(5) Å, α = 107.763(1)°, β = 98.730(1)°, γ = 97.020(1)°, V = 1392.76(9) Å3, and Z = 1] features a composite one-dimensional BiCl 3 framework in which the Bi(III) center is chelated to the organic ligand. The chelation bonds facilitate the ligand-metal center interaction and generate substantial charge transfer phenomena. The ease of crystallization is ascribed to the relatively weak Bi(III)-Cl bonds that serve to connect the organic ligands and the similar crystalline packing motifs of the reactant (1) and the product (1·BiCl3). The synthesis of compound 1·BiCl3 indicates that semiconductive networks can be effectively accessed by linking electroactive organic ligands through intervening metal halide moieties. Compound 1·BiCl3 can also be made in a solvent-free solid state reaction.
UR - http://www.scopus.com/inward/record.url?scp=16444378645&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=16444378645&partnerID=8YFLogxK
U2 - 10.1021/cg049817k
DO - 10.1021/cg049817k
M3 - Article
SN - 1528-7483
VL - 5
SP - 423
EP - 425
JO - Crystal Growth and Design
JF - Crystal Growth and Design
IS - 2
ER -