Abiotic factors determine functional outcomes of microbial inoculation of soils from a metal contaminated brownfield

Jay Prakash Singh, Eleanor U. Ojinnaka, Jennifer Krumins, Nina Goodey

Research output: Contribution to journalArticle

Abstract

Whole community microbial inoculation can improve soil function in contaminated environments. Here we conducted a case study to investigate whether biotic factors (inoculum) or abiotic factors (soil base) have more impact on the extracellular enzymatic activities in a whole community microbial inoculation. To this end, we cross-inoculated microbial communities between two heavy metal-contaminated soils, with high and low extracellular enzyme activities, respectively. We measured extracellular phosphatase activity, a proxy for soil function, after self- and cross-inoculation of microbial communities into sterilized soils, and all activities were normalized to non-inoculated controls. We found that inoculation increased phosphatase activity in the soils. For soils treated with different inocula, we found significant differences in the microbial community compositions but no significant differences in the extracellular phosphatase activities normalized to their respective sterilized, non-inoculated controls (4.7 ± 1.8 and 3.3 ± 0.5 for soils inoculated with microbial communities from 146 to 43, respectively). On the other hand, normalized phosphatase activities between the two soil bases were significantly different (4.1 ± 0.12 and 1.9 ± 0.12 for soil bases 146 and 43, respectively) regardless of the source of the inoculum that did not vary between soil bases. The results indicate that the abiotic properties of the soils were a significant predictor for phosphatase activity but not for the end-point composition of the microbial community. The findings suggest that targeted microbial inocula from metal contaminated soils can increase phosphatase activity, and likely soil functioning in general, but the degree to which this happens depends on the abiotic environment, in this case, metal contamination.

Original languageEnglish
Pages (from-to)450-456
Number of pages7
JournalEcotoxicology and Environmental Safety
Volume168
DOIs
StatePublished - Jan 30 2019

Fingerprint

Soil
Metals
Soils
Phosphatases
Phosphoric Monoester Hydrolases
Enzyme activity
Proxy
Heavy Metals
Chemical analysis
Heavy metals
Contamination

Cite this

@article{26c90a59546c4e798dc9db39b6ee7a4c,
title = "Abiotic factors determine functional outcomes of microbial inoculation of soils from a metal contaminated brownfield",
abstract = "Whole community microbial inoculation can improve soil function in contaminated environments. Here we conducted a case study to investigate whether biotic factors (inoculum) or abiotic factors (soil base) have more impact on the extracellular enzymatic activities in a whole community microbial inoculation. To this end, we cross-inoculated microbial communities between two heavy metal-contaminated soils, with high and low extracellular enzyme activities, respectively. We measured extracellular phosphatase activity, a proxy for soil function, after self- and cross-inoculation of microbial communities into sterilized soils, and all activities were normalized to non-inoculated controls. We found that inoculation increased phosphatase activity in the soils. For soils treated with different inocula, we found significant differences in the microbial community compositions but no significant differences in the extracellular phosphatase activities normalized to their respective sterilized, non-inoculated controls (4.7 ± 1.8 and 3.3 ± 0.5 for soils inoculated with microbial communities from 146 to 43, respectively). On the other hand, normalized phosphatase activities between the two soil bases were significantly different (4.1 ± 0.12 and 1.9 ± 0.12 for soil bases 146 and 43, respectively) regardless of the source of the inoculum that did not vary between soil bases. The results indicate that the abiotic properties of the soils were a significant predictor for phosphatase activity but not for the end-point composition of the microbial community. The findings suggest that targeted microbial inocula from metal contaminated soils can increase phosphatase activity, and likely soil functioning in general, but the degree to which this happens depends on the abiotic environment, in this case, metal contamination.",
author = "Singh, {Jay Prakash} and Ojinnaka, {Eleanor U.} and Jennifer Krumins and Nina Goodey",
year = "2019",
month = "1",
day = "30",
doi = "https://doi.org/10.1016/j.ecoenv.2018.10.114",
language = "English",
volume = "168",
pages = "450--456",
journal = "Ecotoxicology and Environmental Safety",
issn = "0147-6513",
publisher = "Academic Press Inc.",

}

Abiotic factors determine functional outcomes of microbial inoculation of soils from a metal contaminated brownfield. / Singh, Jay Prakash; Ojinnaka, Eleanor U.; Krumins, Jennifer; Goodey, Nina.

In: Ecotoxicology and Environmental Safety, Vol. 168, 30.01.2019, p. 450-456.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Abiotic factors determine functional outcomes of microbial inoculation of soils from a metal contaminated brownfield

AU - Singh, Jay Prakash

AU - Ojinnaka, Eleanor U.

AU - Krumins, Jennifer

AU - Goodey, Nina

PY - 2019/1/30

Y1 - 2019/1/30

N2 - Whole community microbial inoculation can improve soil function in contaminated environments. Here we conducted a case study to investigate whether biotic factors (inoculum) or abiotic factors (soil base) have more impact on the extracellular enzymatic activities in a whole community microbial inoculation. To this end, we cross-inoculated microbial communities between two heavy metal-contaminated soils, with high and low extracellular enzyme activities, respectively. We measured extracellular phosphatase activity, a proxy for soil function, after self- and cross-inoculation of microbial communities into sterilized soils, and all activities were normalized to non-inoculated controls. We found that inoculation increased phosphatase activity in the soils. For soils treated with different inocula, we found significant differences in the microbial community compositions but no significant differences in the extracellular phosphatase activities normalized to their respective sterilized, non-inoculated controls (4.7 ± 1.8 and 3.3 ± 0.5 for soils inoculated with microbial communities from 146 to 43, respectively). On the other hand, normalized phosphatase activities between the two soil bases were significantly different (4.1 ± 0.12 and 1.9 ± 0.12 for soil bases 146 and 43, respectively) regardless of the source of the inoculum that did not vary between soil bases. The results indicate that the abiotic properties of the soils were a significant predictor for phosphatase activity but not for the end-point composition of the microbial community. The findings suggest that targeted microbial inocula from metal contaminated soils can increase phosphatase activity, and likely soil functioning in general, but the degree to which this happens depends on the abiotic environment, in this case, metal contamination.

AB - Whole community microbial inoculation can improve soil function in contaminated environments. Here we conducted a case study to investigate whether biotic factors (inoculum) or abiotic factors (soil base) have more impact on the extracellular enzymatic activities in a whole community microbial inoculation. To this end, we cross-inoculated microbial communities between two heavy metal-contaminated soils, with high and low extracellular enzyme activities, respectively. We measured extracellular phosphatase activity, a proxy for soil function, after self- and cross-inoculation of microbial communities into sterilized soils, and all activities were normalized to non-inoculated controls. We found that inoculation increased phosphatase activity in the soils. For soils treated with different inocula, we found significant differences in the microbial community compositions but no significant differences in the extracellular phosphatase activities normalized to their respective sterilized, non-inoculated controls (4.7 ± 1.8 and 3.3 ± 0.5 for soils inoculated with microbial communities from 146 to 43, respectively). On the other hand, normalized phosphatase activities between the two soil bases were significantly different (4.1 ± 0.12 and 1.9 ± 0.12 for soil bases 146 and 43, respectively) regardless of the source of the inoculum that did not vary between soil bases. The results indicate that the abiotic properties of the soils were a significant predictor for phosphatase activity but not for the end-point composition of the microbial community. The findings suggest that targeted microbial inocula from metal contaminated soils can increase phosphatase activity, and likely soil functioning in general, but the degree to which this happens depends on the abiotic environment, in this case, metal contamination.

UR - http://www.scopus.com/inward/record.url?scp=85056180347&partnerID=8YFLogxK

U2 - https://doi.org/10.1016/j.ecoenv.2018.10.114

DO - https://doi.org/10.1016/j.ecoenv.2018.10.114

M3 - Article

VL - 168

SP - 450

EP - 456

JO - Ecotoxicology and Environmental Safety

JF - Ecotoxicology and Environmental Safety

SN - 0147-6513

ER -