Adhesion, intake, and release of nanoparticles by lipid bilayers

Sean Burgess, Zhengjia Wang, Aleksey Vishnyakov, Alexander V. Neimark

Research output: Contribution to journalArticle

Abstract

Understanding the interactions between nanoparticles (NP) and lipid bilayers (LB), which constitute the foundations of cell membranes, is important for emerging biomedical technologies, as well as for assessing health threats related to nanoparticle commercialization. Applying dissipative particle dynamic simulations, we explore adhesion, intake, and release of hydrophobic nanoparticles by DMPC bilayers. To replicate experimental conditions, we develop a novel simulation setup for modeling membranes at isotension conditions. NP-LB interactions are quantified by the free energy landscape calculated by the ghost tweezers method. NPs are studied z of diameter 2 nm (comparable with the LB hydrophobic core), 4 nm (comparable with the LB thickness) and 8 nm (exceeding the LB thickness). NPs are pre-covered by an adsorbed lipid monolayer. It is shown that NP translocation across LB includes (1) NP intake into the hydrophobic core via merging of the monolayer adsorbed on NP with the outer leaflet of bilayer (2) NP release via formation and rupture of a lipid junction connecting NP and LB. Both stages are associated with free energy barriers. The barrier for the intake stage increases with the NP size and becomes prohibitively high for 8 nm NP. The barriers for the release stage are significantly higher which implies that the release stage controls the translocation rate and dynamics. The release energy barrier of 4 nm NP is found smaller than those for 2 and 8 nm NPs which implies the existence of the optimal NP size for unforced trans-membrane transport. Based on the calculated free energy landscape, the dynamics of unforced transport of NP across LB is evaluated using the Fokker-Planck equation, which mimics NP diffusion along the free energy landscape with multiple attempts to reach the barrier. We found that the number of attempts required for successful translocation scales exponentially with the energy barrier.

Original languageEnglish (US)
Pages (from-to)58-70
Number of pages13
JournalJournal of Colloid And Interface Science
Volume561
DOIs
StatePublished - Mar 1 2020

Fingerprint

Lipid bilayers
Adhesion
Nanoparticles
Free energy
Energy barriers
Lipids
Monolayers
Dimyristoylphosphatidylcholine
Membranes
Fokker Planck equation
Cell membranes
Merging

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Surfaces, Coatings and Films
  • Biomaterials
  • Colloid and Surface Chemistry

Keywords

  • Adhesion
  • Lipid membranes
  • Nanoparticle translocation
  • Nanoparticles

Cite this

Burgess, Sean ; Wang, Zhengjia ; Vishnyakov, Aleksey ; Neimark, Alexander V. / Adhesion, intake, and release of nanoparticles by lipid bilayers. In: Journal of Colloid And Interface Science. 2020 ; Vol. 561. pp. 58-70.
@article{93aefb09165f4fb0a78182b7d29611ae,
title = "Adhesion, intake, and release of nanoparticles by lipid bilayers",
abstract = "Understanding the interactions between nanoparticles (NP) and lipid bilayers (LB), which constitute the foundations of cell membranes, is important for emerging biomedical technologies, as well as for assessing health threats related to nanoparticle commercialization. Applying dissipative particle dynamic simulations, we explore adhesion, intake, and release of hydrophobic nanoparticles by DMPC bilayers. To replicate experimental conditions, we develop a novel simulation setup for modeling membranes at isotension conditions. NP-LB interactions are quantified by the free energy landscape calculated by the ghost tweezers method. NPs are studied z of diameter 2 nm (comparable with the LB hydrophobic core), 4 nm (comparable with the LB thickness) and 8 nm (exceeding the LB thickness). NPs are pre-covered by an adsorbed lipid monolayer. It is shown that NP translocation across LB includes (1) NP intake into the hydrophobic core via merging of the monolayer adsorbed on NP with the outer leaflet of bilayer (2) NP release via formation and rupture of a lipid junction connecting NP and LB. Both stages are associated with free energy barriers. The barrier for the intake stage increases with the NP size and becomes prohibitively high for 8 nm NP. The barriers for the release stage are significantly higher which implies that the release stage controls the translocation rate and dynamics. The release energy barrier of 4 nm NP is found smaller than those for 2 and 8 nm NPs which implies the existence of the optimal NP size for unforced trans-membrane transport. Based on the calculated free energy landscape, the dynamics of unforced transport of NP across LB is evaluated using the Fokker-Planck equation, which mimics NP diffusion along the free energy landscape with multiple attempts to reach the barrier. We found that the number of attempts required for successful translocation scales exponentially with the energy barrier.",
keywords = "Adhesion, Lipid membranes, Nanoparticle translocation, Nanoparticles",
author = "Sean Burgess and Zhengjia Wang and Aleksey Vishnyakov and Neimark, {Alexander V.}",
year = "2020",
month = "3",
day = "1",
doi = "https://doi.org/10.1016/j.jcis.2019.11.106",
language = "English (US)",
volume = "561",
pages = "58--70",
journal = "Journal of Colloid and Interface Science",
issn = "0021-9797",
publisher = "Academic Press Inc.",

}

Adhesion, intake, and release of nanoparticles by lipid bilayers. / Burgess, Sean; Wang, Zhengjia; Vishnyakov, Aleksey; Neimark, Alexander V.

In: Journal of Colloid And Interface Science, Vol. 561, 01.03.2020, p. 58-70.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Adhesion, intake, and release of nanoparticles by lipid bilayers

AU - Burgess, Sean

AU - Wang, Zhengjia

AU - Vishnyakov, Aleksey

AU - Neimark, Alexander V.

PY - 2020/3/1

Y1 - 2020/3/1

N2 - Understanding the interactions between nanoparticles (NP) and lipid bilayers (LB), which constitute the foundations of cell membranes, is important for emerging biomedical technologies, as well as for assessing health threats related to nanoparticle commercialization. Applying dissipative particle dynamic simulations, we explore adhesion, intake, and release of hydrophobic nanoparticles by DMPC bilayers. To replicate experimental conditions, we develop a novel simulation setup for modeling membranes at isotension conditions. NP-LB interactions are quantified by the free energy landscape calculated by the ghost tweezers method. NPs are studied z of diameter 2 nm (comparable with the LB hydrophobic core), 4 nm (comparable with the LB thickness) and 8 nm (exceeding the LB thickness). NPs are pre-covered by an adsorbed lipid monolayer. It is shown that NP translocation across LB includes (1) NP intake into the hydrophobic core via merging of the monolayer adsorbed on NP with the outer leaflet of bilayer (2) NP release via formation and rupture of a lipid junction connecting NP and LB. Both stages are associated with free energy barriers. The barrier for the intake stage increases with the NP size and becomes prohibitively high for 8 nm NP. The barriers for the release stage are significantly higher which implies that the release stage controls the translocation rate and dynamics. The release energy barrier of 4 nm NP is found smaller than those for 2 and 8 nm NPs which implies the existence of the optimal NP size for unforced trans-membrane transport. Based on the calculated free energy landscape, the dynamics of unforced transport of NP across LB is evaluated using the Fokker-Planck equation, which mimics NP diffusion along the free energy landscape with multiple attempts to reach the barrier. We found that the number of attempts required for successful translocation scales exponentially with the energy barrier.

AB - Understanding the interactions between nanoparticles (NP) and lipid bilayers (LB), which constitute the foundations of cell membranes, is important for emerging biomedical technologies, as well as for assessing health threats related to nanoparticle commercialization. Applying dissipative particle dynamic simulations, we explore adhesion, intake, and release of hydrophobic nanoparticles by DMPC bilayers. To replicate experimental conditions, we develop a novel simulation setup for modeling membranes at isotension conditions. NP-LB interactions are quantified by the free energy landscape calculated by the ghost tweezers method. NPs are studied z of diameter 2 nm (comparable with the LB hydrophobic core), 4 nm (comparable with the LB thickness) and 8 nm (exceeding the LB thickness). NPs are pre-covered by an adsorbed lipid monolayer. It is shown that NP translocation across LB includes (1) NP intake into the hydrophobic core via merging of the monolayer adsorbed on NP with the outer leaflet of bilayer (2) NP release via formation and rupture of a lipid junction connecting NP and LB. Both stages are associated with free energy barriers. The barrier for the intake stage increases with the NP size and becomes prohibitively high for 8 nm NP. The barriers for the release stage are significantly higher which implies that the release stage controls the translocation rate and dynamics. The release energy barrier of 4 nm NP is found smaller than those for 2 and 8 nm NPs which implies the existence of the optimal NP size for unforced trans-membrane transport. Based on the calculated free energy landscape, the dynamics of unforced transport of NP across LB is evaluated using the Fokker-Planck equation, which mimics NP diffusion along the free energy landscape with multiple attempts to reach the barrier. We found that the number of attempts required for successful translocation scales exponentially with the energy barrier.

KW - Adhesion

KW - Lipid membranes

KW - Nanoparticle translocation

KW - Nanoparticles

UR - http://www.scopus.com/inward/record.url?scp=85076033513&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85076033513&partnerID=8YFLogxK

U2 - https://doi.org/10.1016/j.jcis.2019.11.106

DO - https://doi.org/10.1016/j.jcis.2019.11.106

M3 - Article

C2 - 31812867

VL - 561

SP - 58

EP - 70

JO - Journal of Colloid and Interface Science

JF - Journal of Colloid and Interface Science

SN - 0021-9797

ER -