Balance control and analysis of stationary riderless motorcycles

Yizhai Zhang, Jingliang Li, Jingang Yi, Dezhen Song

Research output: Chapter in Book/Report/Conference proceedingConference contribution

24 Scopus citations

Abstract

We present balancing control analysis of a stationary riderless motorcycle. We first present the motorcycle dynamics with an accurate steering mechanism model with consideration of lateral movement of the tire/ground contact point. A nonlinear balance controller is then designed. We estimate the domain of attraction (DOA) of motorcycle dynamics under which the stationary motorcycle can be stabilized by steering. For a typical motorcycle/bicycle configuration, we find that the DOA is relatively small and thus balancing control by only steering at stationary is challenging. The balance control and DOA estimation schemes are validated by experiments conducted on the Rutgers autonomous motorcycle. The attitudes of the motorcycle platform are obtained by a novel estimation scheme that fuses measurements from global positioning systems (GPS) and inertial measurement units (IMU). We also present the experiments of the GPS/IMU-based attitude estimation scheme in the paper.

Original languageEnglish (US)
Title of host publication2011 IEEE International Conference on Robotics and Automation, ICRA 2011
Pages3018-3023
Number of pages6
DOIs
StatePublished - 2011
Event2011 IEEE International Conference on Robotics and Automation, ICRA 2011 - Shanghai, China
Duration: May 9 2011May 13 2011

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation

Conference

Conference2011 IEEE International Conference on Robotics and Automation, ICRA 2011
Country/TerritoryChina
CityShanghai
Period5/9/115/13/11

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Balance control and analysis of stationary riderless motorcycles'. Together they form a unique fingerprint.

Cite this