Abstract
Cancer stem cells (CSC) are chemoresistant and implicated in tumor recurrence, metastasis and high patient mortality; thus substances impairing CSC activity, could be invaluable as novel cancer therapeutics. We previously showed that CAPE (caffeic acid phenethyl ester), a component of propolis, a honeybee product, inhibits growth of MDA-MB-231 (MDA-231) cells, mdr gene expression, NF-κB, EGFR, and VEGF. We hypothesized that CAPE also acts by interfering with CSC-mediated effects. We isolated breast CSC (bCSC) from MDA-231 cells, a model of human triple-negative breast cancer, and mouse xenografts. bCSC grow as mammospheres (MMS) and when dissociated into single cells, form MMS again, a sign of self-renewal. bCSC exhibited the characteristic CD44 +/CD24 -/low phenotype and generated progenitors in the presence of serum, a CSC trait responsible for regenerating tumor mass. CAPE caused dose-dependent bCSC self-renewal inhibition and progenitor formation. Clonal growth on soft agar was inhibited dosedependently, but apoptosis was not induced as determined by Annexin-V/PI assay. Instead, bCSC were noted to significantly progress from a quiescent cell cycle state in G0/G1 (82%), S phase (12%) to a cycling state with an increase in S phase (41%) and subsequent decrease in G0/G1 (54%). Treatment of bCSC with CAPE (4.5-days) decreased CD44 levels by 95%, while another cell population containing 10-100-fold lower CD44 content concurrently increased. Results: suggest that CAPE causes pronounced changes in bCSC characteristics manifested by inhibition of self renewal, progenitor formation, clonal growth in soft agar, and concurrent significant decrease in CD44 content, all signs of decreased malignancy potential.
Original language | English (US) |
---|---|
Pages (from-to) | 1279-1288 |
Number of pages | 10 |
Journal | Investigational New Drugs |
Volume | 30 |
Issue number | 4 |
DOIs | |
State | Published - Aug 2012 |
Externally published | Yes |
ASJC Scopus subject areas
- Oncology
- Pharmacology
- Pharmacology (medical)
Keywords
- Breast cancer stem cells
- CAPE
- CD44
- Cell cycle
- Chemoresistant
- Mammospheres
- Self renewal