Changes in Larval Oyster Swimming Behavior with Salinity and Larval Age

Emily C. Manuel, Joseph Caracappa, Daphne Munroe

Research output: Contribution to journalArticlepeer-review

Abstract

Eastern oysters (Crassostrea virginica) are sessile, relying on a larval phase to disperse in estuaries. Oyster larval swimming behavior can alter dispersal trajectories and patterns of population connectivity. Experiments were conducted to test how both (1) acclimation time to new environmental conditions and (2) larval swimming behavior change with salinity and larval age. Acclimation time to changes in salinity was longest in lower salinity (6 ppt) and decreased with age. To test changes in behavior with salinity, larvae were placed into four salinities (6, 10, 16, and 22 ppt) where swimming was re-corded. To test changes in behavior with age, larvae aged 6, 12, and 15 days were recorded. In both experiments, swimming paths were mapped in two dimensions, behavior of each path was categorized, and speed, direction, and acceleration were calculated. The frequency of upward, neutral, and downward swimming behaviors did not differ across salinity treatments but did vary with age, whereas the frequency of behavior types varied with both salinity and ontogeny. As an ex-ample, diving was observed more frequently in low salinity, and more downward helices were observed in moderate salinity, while younger larvae swam upward with more frequency than older larvae. Surprisingly, diving was observed in 10%–15% of all larvae across all ages. Given the consequence of larval behavior to marine invertebrate dispersal, changes in swimming over larval age and in response to environmental changes have important implications to marine population stability and structure.

Original languageAmerican English
Pages (from-to)94-102
Number of pages9
JournalBiological Bulletin
Volume244
Issue number2
DOIs
StatePublished - Apr 2023
Externally publishedYes

ASJC Scopus subject areas

  • General Agricultural and Biological Sciences

Cite this