Characterizing fracture response of cracked transversely graded materials

Behrad Koohbor, Milad Rohanifar, Addis Kidane

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Property gradation along a crack front makes conventional fracture mechanics analyses challenging. This issue is addressed in the present study through a combination of full-field measurements and modeling. We develop a novel experimental setup that consists of a synchronous dual Digital Image Correlation (DIC) system, facilitating in situ measurement of displacement and strain fields on both sides of a transversely precracked multi-layered structure subjected to uniaxial tensile load. By measuring the evolution of stress intensity factors developed on the opposite sides of the sample, we explore the mechanisms of crack initiation and propagation in the examined graded sample. Our experimental measurements are supplemented by a finite element analysis that elucidates the deformation and fracture response of the internal layers for which surface measurement is not possible. Finally, based on experimental and numerical observations, we develop a simple model that allows for prediction of critical far-field loads at which transversely graded structures fail. The capability of our proposed model in predicting tensile failure loads is demonstrated through a brief study of the influence of gradient function on the load bearing and fracture resistance in various graded structures.

Original languageEnglish (US)
Article number111439
JournalComposite Structures
Volume229
DOIs
StatePublished - Dec 1 2019

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Civil and Structural Engineering

Fingerprint

Dive into the research topics of 'Characterizing fracture response of cracked transversely graded materials'. Together they form a unique fingerprint.

Cite this