Coarse-grained component concurrency in Earth system modeling: Parallelizing atmospheric radiative transfer in the GFDL AM3 model using the Flexible Modeling System coupling framework

V. Balaji, Rusty Benson, Bruce Wyman, Isaac M. Held

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Climate models represent a large variety of processes on a variety of timescales and space scales, a canonical example of multi-physics multi-scale modeling. Current hardware trends, such as Graphical Processing Units (GPUs) and Many Integrated Core (MIC) chips, are based on, at best, marginal increases in clock speed, coupled with vast increases in concurrency, particularly at the fine grain. Multi-physics codes face particular challenges in achieving fine-grained concurrency, as different physics and dynamics components have different computational profiles, and universal solutions are hard to come by. We propose here one approach for multi-physics codes. These codes are typically structured as components interacting via software frameworks. The component structure of a typical Earth system model consists of a hierarchical and recursive tree of components, each representing a different climate process or dynamical system. This recursive structure generally encompasses a modest level of concurrency at the highest level (e.g., atmosphere and ocean on different processor sets) with serial organization underneath. We propose to extend concurrency much further by running more and more lower- and higher-level components in parallel with each other. Each component can further be parallelized on the fine grain, potentially offering a major increase in the scalability of Earth system models. We present here first results from this approach, called coarse-grained component concurrency, or CCC. Within the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modeling System (FMS), the atmospheric radiative transfer component has been configured to run in parallel with a composite component consisting of every other atmospheric component, including the atmospheric dynamics and all other atmospheric physics components. We will explore the algorithmic challenges involved in such an approach, and present results from such simulations. Plans to achieve even greater levels of coarse-grained concurrency by extending this approach within other components, such as the ocean, will be discussed.

Original languageEnglish (US)
Pages (from-to)3605-3616
Number of pages12
JournalGeoscientific Model Development
Volume9
Issue number10
DOIs
StatePublished - Oct 11 2016
Externally publishedYes

Fingerprint

Geophysical Fluid Dynamics
atmospheric modeling
Radiative Transfer
Radiative transfer
fluid dynamics
Fluid dynamics
Concurrency
System Modeling
radiative transfer
physics
Physics
Earth (planet)
modeling
atmospheric dynamics
Multiphysics
ocean
Climate models
Model
hardware
climate modeling

All Science Journal Classification (ASJC) codes

  • Earth and Planetary Sciences(all)
  • Modeling and Simulation

Cite this

@article{7f1a5bbd33374a578637eb3cdd4e32f6,
title = "Coarse-grained component concurrency in Earth system modeling: Parallelizing atmospheric radiative transfer in the GFDL AM3 model using the Flexible Modeling System coupling framework",
abstract = "Climate models represent a large variety of processes on a variety of timescales and space scales, a canonical example of multi-physics multi-scale modeling. Current hardware trends, such as Graphical Processing Units (GPUs) and Many Integrated Core (MIC) chips, are based on, at best, marginal increases in clock speed, coupled with vast increases in concurrency, particularly at the fine grain. Multi-physics codes face particular challenges in achieving fine-grained concurrency, as different physics and dynamics components have different computational profiles, and universal solutions are hard to come by. We propose here one approach for multi-physics codes. These codes are typically structured as components interacting via software frameworks. The component structure of a typical Earth system model consists of a hierarchical and recursive tree of components, each representing a different climate process or dynamical system. This recursive structure generally encompasses a modest level of concurrency at the highest level (e.g., atmosphere and ocean on different processor sets) with serial organization underneath. We propose to extend concurrency much further by running more and more lower- and higher-level components in parallel with each other. Each component can further be parallelized on the fine grain, potentially offering a major increase in the scalability of Earth system models. We present here first results from this approach, called coarse-grained component concurrency, or CCC. Within the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modeling System (FMS), the atmospheric radiative transfer component has been configured to run in parallel with a composite component consisting of every other atmospheric component, including the atmospheric dynamics and all other atmospheric physics components. We will explore the algorithmic challenges involved in such an approach, and present results from such simulations. Plans to achieve even greater levels of coarse-grained concurrency by extending this approach within other components, such as the ocean, will be discussed.",
author = "V. Balaji and Rusty Benson and Bruce Wyman and Held, {Isaac M.}",
year = "2016",
month = "10",
day = "11",
doi = "https://doi.org/10.5194/gmd-9-3605-2016",
language = "English (US)",
volume = "9",
pages = "3605--3616",
journal = "Geoscientific Model Development",
issn = "1991-959X",
publisher = "Copernicus Gesellschaft mbH",
number = "10",

}

TY - JOUR

T1 - Coarse-grained component concurrency in Earth system modeling

T2 - Parallelizing atmospheric radiative transfer in the GFDL AM3 model using the Flexible Modeling System coupling framework

AU - Balaji, V.

AU - Benson, Rusty

AU - Wyman, Bruce

AU - Held, Isaac M.

PY - 2016/10/11

Y1 - 2016/10/11

N2 - Climate models represent a large variety of processes on a variety of timescales and space scales, a canonical example of multi-physics multi-scale modeling. Current hardware trends, such as Graphical Processing Units (GPUs) and Many Integrated Core (MIC) chips, are based on, at best, marginal increases in clock speed, coupled with vast increases in concurrency, particularly at the fine grain. Multi-physics codes face particular challenges in achieving fine-grained concurrency, as different physics and dynamics components have different computational profiles, and universal solutions are hard to come by. We propose here one approach for multi-physics codes. These codes are typically structured as components interacting via software frameworks. The component structure of a typical Earth system model consists of a hierarchical and recursive tree of components, each representing a different climate process or dynamical system. This recursive structure generally encompasses a modest level of concurrency at the highest level (e.g., atmosphere and ocean on different processor sets) with serial organization underneath. We propose to extend concurrency much further by running more and more lower- and higher-level components in parallel with each other. Each component can further be parallelized on the fine grain, potentially offering a major increase in the scalability of Earth system models. We present here first results from this approach, called coarse-grained component concurrency, or CCC. Within the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modeling System (FMS), the atmospheric radiative transfer component has been configured to run in parallel with a composite component consisting of every other atmospheric component, including the atmospheric dynamics and all other atmospheric physics components. We will explore the algorithmic challenges involved in such an approach, and present results from such simulations. Plans to achieve even greater levels of coarse-grained concurrency by extending this approach within other components, such as the ocean, will be discussed.

AB - Climate models represent a large variety of processes on a variety of timescales and space scales, a canonical example of multi-physics multi-scale modeling. Current hardware trends, such as Graphical Processing Units (GPUs) and Many Integrated Core (MIC) chips, are based on, at best, marginal increases in clock speed, coupled with vast increases in concurrency, particularly at the fine grain. Multi-physics codes face particular challenges in achieving fine-grained concurrency, as different physics and dynamics components have different computational profiles, and universal solutions are hard to come by. We propose here one approach for multi-physics codes. These codes are typically structured as components interacting via software frameworks. The component structure of a typical Earth system model consists of a hierarchical and recursive tree of components, each representing a different climate process or dynamical system. This recursive structure generally encompasses a modest level of concurrency at the highest level (e.g., atmosphere and ocean on different processor sets) with serial organization underneath. We propose to extend concurrency much further by running more and more lower- and higher-level components in parallel with each other. Each component can further be parallelized on the fine grain, potentially offering a major increase in the scalability of Earth system models. We present here first results from this approach, called coarse-grained component concurrency, or CCC. Within the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modeling System (FMS), the atmospheric radiative transfer component has been configured to run in parallel with a composite component consisting of every other atmospheric component, including the atmospheric dynamics and all other atmospheric physics components. We will explore the algorithmic challenges involved in such an approach, and present results from such simulations. Plans to achieve even greater levels of coarse-grained concurrency by extending this approach within other components, such as the ocean, will be discussed.

UR - http://www.scopus.com/inward/record.url?scp=84991628326&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84991628326&partnerID=8YFLogxK

U2 - https://doi.org/10.5194/gmd-9-3605-2016

DO - https://doi.org/10.5194/gmd-9-3605-2016

M3 - Article

VL - 9

SP - 3605

EP - 3616

JO - Geoscientific Model Development

JF - Geoscientific Model Development

SN - 1991-959X

IS - 10

ER -