Computational fluid dynamics simulations in flow past arrays of finite plate - Marine current energy harvesting applications

Bashar Attiya, I. Han Liu, Jacob Riglin, Alparslan Oztekin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Computational fluid dynamics simulations have been conducted for flows past two finite tandem plates at Reynolds number of 50,000. Large Eddy Simulations (LES) were employed in two and three-dimensional geometries to study the interference between tandem plate pair. In order to study the effects of plate corner angle on the flow field and drag forces, two different plate end corners, 90o and a sharp 45o corner angle, were also investigated. The switching from 90o to 45o corners complicate the flow pattern, increase the mean value of drag force and the fluctuations of the drag on the plate. As vortices shed from the upstream plate and reached close proximity to the face of the downstream plate, the vortex cores deformed highly. This behavior reduces the drag coefficient in the downstream plate. Drag coefficient was higher in the 45o case, for both the up and downstream plates by 5% and 10% respectively. Drag coefficient of downstream is recovered almost fully in the 45o case with just 3% difference from the upstream compared to 7% difference in 90o case. Lagrangian Coherent structures were identified and presented in a two-dimensional geometry. This gave a better understanding of the wake flow structure and their influence on the hydrodynamic loading on plates. Contours of vorticity fields and iso-surfaces of Q-criterion, and pressure distribution around the plates were also presented and discussed.

Original languageEnglish (US)
Title of host publicationFluids Engineering
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858424
DOIs
StatePublished - Jan 1 2017
Externally publishedYes
EventASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017 - Tampa, United States
Duration: Nov 3 2017Nov 9 2017

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume7

Other

OtherASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017
CountryUnited States
CityTampa
Period11/3/1711/9/17

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Computational fluid dynamics simulations in flow past arrays of finite plate - Marine current energy harvesting applications'. Together they form a unique fingerprint.

  • Cite this

    Attiya, B., Liu, I. H., Riglin, J., & Oztekin, A. (2017). Computational fluid dynamics simulations in flow past arrays of finite plate - Marine current energy harvesting applications. In Fluids Engineering (ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 7). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/IMECE2017-70900