Deep Graph random process for relational-thinking-based speech recognition

Hengguan Huang, Fuzhao Xue, Hao Wang, Ye Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Lying at the core of human intelligence, relational thinking is characterized by initially relying on innumerable unconscious percepts pertaining to relations between new sensory signals and prior knowledge, consequently becoming a recognizable concept or object through coupling and transformation of these percepts. Such mental processes are difficult to model in real-world problems such as in conversational automatic speech recognition (ASR), as the percepts (if they are modelled as graphs indicating relationships among utterances) are supposed to be innumerable and not directly observable. In this paper, we present a Bayesian nonparametric deep learning method called deep graph random process (DGP) that can generate an infinite number of probabilistic graphs representing percepts. We further provide a closed-form solution for coupling and transformation of these percept graphs for acoustic modeling. Our approach is able to successfully infer relations among utterances without using any relational data during training. Experimental evaluations on ASR tasks including CHiME-2 and CHiME-5 demonstrate the effectiveness and benefits of our method.

Original languageAmerican English
Title of host publication37th International Conference on Machine Learning, ICML 2020
EditorsHal Daume, Aarti Singh
PublisherInternational Machine Learning Society (IMLS)
Pages4481-4491
Number of pages11
ISBN (Electronic)9781713821120
StatePublished - 2020
Externally publishedYes
Event37th International Conference on Machine Learning, ICML 2020 - Virtual, Online
Duration: Jul 13 2020Jul 18 2020

Publication series

Name37th International Conference on Machine Learning, ICML 2020
VolumePartF168147-6

Conference

Conference37th International Conference on Machine Learning, ICML 2020
CityVirtual, Online
Period7/13/207/18/20

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Human-Computer Interaction
  • Software

Fingerprint

Dive into the research topics of 'Deep Graph random process for relational-thinking-based speech recognition'. Together they form a unique fingerprint.

Cite this