Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems

David Angeli, James E. Ferrell, Eduardo D. Sontag

Research output: Contribution to journalArticlepeer-review

684 Scopus citations

Abstract

It is becoming increasingly clear that bistability (or, more generally, multistability) is an important recurring theme in cell signaling. Bistability may be of particular relevance to biological systems that switch between discrete states, generate oscillatory responses, or "remember" transitory stimuli. Standard mathematical methods allow the detection of bistability in some very simple feedback systems (systems with one or two proteins or genes that either activate each other or inhibit each other), but realistic depictions of signal transduction networks are invariably much more complex. Here, we show that for a class of feedback systems of arbitrary order the stability properties of the system can be deduced mathematically from how the system behaves when feedback is blocked. Provided that this open-loop, feedback-blocked system is monotone and possesses a sigmoidal characteristic, the system is guaranteed to be bistable for some range of feedback strengths. We present a simple graphical method for deducing the stability behavior and bifurcation diagrams for such systems and illustrate the method with two examples taken from recent experimental studies of bistable systems: a two-variable Cdc2/Wee1 system and a more complicated five-variable mitogen-activated protein kinase cascade.

Original languageEnglish (US)
Pages (from-to)1822-1827
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume101
Issue number7
DOIs
StatePublished - Feb 17 2004

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems'. Together they form a unique fingerprint.

Cite this