TY - GEN
T1 - Differential angular imaging for material recognition
AU - Xue, Jia
AU - Zhang, Hang
AU - Dana, Kristin
AU - Nishino, Ko
N1 - Funding Information: This work was supported by National Science Foundation award IIS-1421134. A GPU used for this research was donated by the NVIDIA Corporation. Thanks to Di Zhu, Hansi Liu, Lingyi Xu, and Yueyang Chen for help with data collection. Publisher Copyright: © 2017 IEEE.
PY - 2017/11/6
Y1 - 2017/11/6
N2 - Material recognition for real-world outdoor surfaces has become increasingly important for computer vision to support its operation “in the wild.” Computational surface modeling that underlies material recognition has transitioned from reflectance modeling using in-lab controlled radiometric measurements to image-based representations based on internet-mined images of materials captured in the scene. We propose a middle-ground approach that takes advantage of both rich radiometric cues and flexible image capture. We develop a framework for differential angular imaging, where small angular variations in image capture provide an enhanced appearance representation and significant recognition improvement. We build a large-scale material database, Ground Terrain in Outdoor Scenes (GTOS), geared towards real use for autonomous agents. This publicly available database1 consists of over 30,000 images covering 40 classes of outdoor ground terrain under varying weather and lighting conditions. We develop a novel approach for material recognition called a Differential Angular Imaging Network (DAIN) to fully leverage this large dataset. With this network architecture, we extract characteristics of materials encoded in the angular and spatial gradients of their appearance. Our results show that DAIN achieves recognition performance that surpasses single view or coarsely quantized multiview images. These results demonstrate the effectiveness of differential angular imaging as a means for flexible, in-place material recognition.
AB - Material recognition for real-world outdoor surfaces has become increasingly important for computer vision to support its operation “in the wild.” Computational surface modeling that underlies material recognition has transitioned from reflectance modeling using in-lab controlled radiometric measurements to image-based representations based on internet-mined images of materials captured in the scene. We propose a middle-ground approach that takes advantage of both rich radiometric cues and flexible image capture. We develop a framework for differential angular imaging, where small angular variations in image capture provide an enhanced appearance representation and significant recognition improvement. We build a large-scale material database, Ground Terrain in Outdoor Scenes (GTOS), geared towards real use for autonomous agents. This publicly available database1 consists of over 30,000 images covering 40 classes of outdoor ground terrain under varying weather and lighting conditions. We develop a novel approach for material recognition called a Differential Angular Imaging Network (DAIN) to fully leverage this large dataset. With this network architecture, we extract characteristics of materials encoded in the angular and spatial gradients of their appearance. Our results show that DAIN achieves recognition performance that surpasses single view or coarsely quantized multiview images. These results demonstrate the effectiveness of differential angular imaging as a means for flexible, in-place material recognition.
UR - http://www.scopus.com/inward/record.url?scp=85044366639&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85044366639&partnerID=8YFLogxK
U2 - https://doi.org/10.1109/CVPR.2017.734
DO - https://doi.org/10.1109/CVPR.2017.734
M3 - Conference contribution
T3 - Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
SP - 6940
EP - 6949
BT - Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Y2 - 21 July 2017 through 26 July 2017
ER -