Abstract
We studied the effects of 2-methoxyestradiol (2-ME2) and 16α-hydroxyestrone (16α-OHE1), two metabolites of estradiol (E2), on DNA synthesis, cell cycle progression and cyclin D1 protein levels in estrogen receptor-positive MCF-7 cells. E2 and 16α-OHE1 stimulated DNA synthesis, and 2-ME2 inhibited the stimulatory effects of these agents. E2 and 16α-OHE1 stimulated the progression of cells from G1 to S phase and this effect was attenuated by 2-ME2. Western blot analysis showed that E2 and 16α-OHE1 increased cyclin D1 protein level by about fourfold compared with control. 2-ME2 had no significant effect on cyclin D1; however, it prevented the accumulation of cyclin D1 in the presence of E2 and 16α-OHE1. Cells transfected with a cyclin D1 reporter gene and treated with E2 or 16α-OHE1 showed 7- and 9.5-fold increase respectively in promoter activity compared with control. This activity was significantly inhibited by 2-ME2. Cyclin D1 transactivation was mediated by the cAMP response element (CRE) region, which binds activating transcription factor 2 (ATF-2). DNA affinity assay showed 2.5- and 3.5-fold increases in ATF-2 binding to CRE in the presence of E2 and 16α-OHE1, respectively. The binding of ATF-2 was inhibited by the presence of 2-ME2. These results show that 2-ME2 can downregulate cyclin D1 and thereby cell cycle progression by a mechanism involving the disruption of ATF-2 binding to cyclin D1 promoter.
Original language | English (US) |
---|---|
Pages (from-to) | 91-105 |
Number of pages | 15 |
Journal | Journal of Molecular Endocrinology |
Volume | 34 |
Issue number | 1 |
DOIs | |
State | Published - Feb 2005 |
ASJC Scopus subject areas
- Molecular Biology
- Endocrinology