Double resolution model for studying TMAO/water effective interactions

Luca Larini, Joan Emma Shea

Research output: Contribution to journalArticlepeer-review

76 Scopus citations


The structural properties of water molecules surrounding TMAO molecules are studied using a newly developed atomistic force field for TMAO, combined with a multiscale coarse-graining (MS-CG) force field derived from the atomistic simulations. The all-atom force field is parametrized to work with the OPLS force field and with SPC, TIP3P, and TIP4P water models. The dual-resolution modeling enables a complete study of the dynamical and structural properties of the system, with the CG model providing important new physical insights into which interactions are critical in determining the structure of water around TMAO. TMAO is an osmolyte that stabilizes protein structures under conditions of chemical, thermal, and pressure denaturation. This molecule is excluded from the surface of proteins, and its effect on protein stability is mediated through TMAO-water interactions. We find that TMAO strongly binds two to three water molecules and, surprisingly, that methyl groups repel both the other methyl groups of TMAO and water molecules alike. The latter result is important because it shows that methyl groups are not interacting with each other through the expected hydrophobic effect (which would be attractive and not repulsive) and that the repulsion of water molecules forces a clathrate-like hydrogen bond network around them. We speculate that TMAO is excluded from the vicinity of the protein because the peculiar structure of water around TMAO prevents this molecule from coming in close contact with the protein.

Original languageEnglish (US)
Pages (from-to)13268-13277
Number of pages10
JournalJournal of Physical Chemistry B
Issue number42
StatePublished - Oct 24 2013

All Science Journal Classification (ASJC) codes

  • Materials Chemistry
  • Surfaces, Coatings and Films
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Double resolution model for studying TMAO/water effective interactions'. Together they form a unique fingerprint.

Cite this