TY - GEN
T1 - Electric Fields Induced by Transcutaneous and Intracranial Current Injections in the Rat Brain
AU - Asan, Ahmet S.
AU - Sahin, Mesut
N1 - Publisher Copyright: © 2018 IEEE.
PY - 2018/10/26
Y1 - 2018/10/26
N2 - As a non-invasive brain stimulation technique, transcranial electrical stimulation (TES) and specifically the transcranial direct current stimulation (tDCS) has gained popularity in recent years for treatment of a wide variety of cognitive and neurological disorders. Recent studies have shown that TES can alter the motor cortex excitability. Animal studies to demonstrate the underlying mechanisms of TES are clearly lacking in literature. Clinical studies have agreed on the critical role of the current intensity and the montage of the electrodes for the treatment to be effective. In this study, we used a rat model for in vivo investigation of the vertical electrical (E) field distribution due to electrodes placed over the skin and through a craniotomy hole. A mono-phasic current pulse was used as a substitute for DC currents by taking advantage of primarily resistive properties of the brain tissue at low frequencies. The electrical potentials induced by the current pulses were recorded with penetrations at 0mm, 2mm, and 4mm away from the stimulation electrode. The results showed that the E-field was maximum immediately under the anodic electrode and decreased both in the vertical and horizontal directions rapidly by distance. The magnitude of the electric field varied from tens of mV/mm to a fraction of mV/mm by distance for a 100 μ A stimulus amplitude. The results also show that the E-field amplitudes and distribution strongly depend on whether the stimulus electrode is placed over the skin or into a craniotomy hole.
AB - As a non-invasive brain stimulation technique, transcranial electrical stimulation (TES) and specifically the transcranial direct current stimulation (tDCS) has gained popularity in recent years for treatment of a wide variety of cognitive and neurological disorders. Recent studies have shown that TES can alter the motor cortex excitability. Animal studies to demonstrate the underlying mechanisms of TES are clearly lacking in literature. Clinical studies have agreed on the critical role of the current intensity and the montage of the electrodes for the treatment to be effective. In this study, we used a rat model for in vivo investigation of the vertical electrical (E) field distribution due to electrodes placed over the skin and through a craniotomy hole. A mono-phasic current pulse was used as a substitute for DC currents by taking advantage of primarily resistive properties of the brain tissue at low frequencies. The electrical potentials induced by the current pulses were recorded with penetrations at 0mm, 2mm, and 4mm away from the stimulation electrode. The results showed that the E-field was maximum immediately under the anodic electrode and decreased both in the vertical and horizontal directions rapidly by distance. The magnitude of the electric field varied from tens of mV/mm to a fraction of mV/mm by distance for a 100 μ A stimulus amplitude. The results also show that the E-field amplitudes and distribution strongly depend on whether the stimulus electrode is placed over the skin or into a craniotomy hole.
UR - http://www.scopus.com/inward/record.url?scp=85056569919&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056569919&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2018.8512770
DO - 10.1109/EMBC.2018.8512770
M3 - Conference contribution
C2 - 30440854
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 2252
EP - 2255
BT - 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
Y2 - 18 July 2018 through 21 July 2018
ER -