Abstract
In search advertising, the search engine needs to select the most profitable advertisements to display, which can be formulated as an instance of online learning with partial feedback, also known as the stochastic multi-armed bandit (MAB) problem. In this paper, we show that the naive application of MAB algorithms to search advertising for advertisement selection will produce sample selection bias that harms the search engine by decreasing expected revenue and "estimation of the largest mean" (ELM) bias that harms the advertisers by increasing game-theoretic player-regret. We then propose simple bias-correction methods with benefits to both the search engine and the advertisers.
Original language | English (US) |
---|---|
Journal | Advances in Neural Information Processing Systems |
State | Published - 2013 |
Event | 27th Annual Conference on Neural Information Processing Systems, NIPS 2013 - Lake Tahoe, NV, United States Duration: Dec 5 2013 → Dec 10 2013 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Information Systems
- Signal Processing