Evolution of the cluster correlation function

Neta Bahcall, H. A O Lei, Paul Bode, Feng Dong

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

We study the evolution of the cluster correlation function and its richness dependence from z = 0 to z = 3 using large-scale cosmological simulations. A standard flat LCDM model with Ωm = 0.3 and, for comparison, a tilted Ωm = 1 model (TSCDM) are used. The evolutionary predictions are presented in a format suitable for direct comparisons with observations. We find that the cluster correlation strength increases with redshift: high-redshift clusters are clustered more strongly (on a comoving scale) than low-redshift clusters of the same mass. The increased correlation with redshift, in spite of the decreasing mass correlation strength, is caused by the strong increase in cluster bias with redshift: clusters represent higher density peaks of the mass distribution as the redshift increases. The richness-dependent cluster correlation function, presented as the correlation scale versus cluster mean separation relation, R0-d, is found to be, remarkably, independent of redshift to z ≲ 2 for LCDM and z ≲ 1 for TSCDM for a fixed correlation function slope and a cluster mass within a fixed comoving radius. The nonevolving R0-d relation implies that both the comoving clustering scale and the cluster mean separation increase with redshift for the same mass clusters, so that the R0-d relation remains essentially unchanged. For LCDM, this relation is R0(Z) ≃ 2.6[d(z}]1/2 for z ≲ 2 in comoving h-1 Mpc scales. The TSCDM model has smaller correlation scales, as expected. Evolution in the relation is seen at z ≳ 2 for LCDM and z ≳ 1 for TSCDM, where the amplitude of the relations declines. The evolution of the R0-d relation from z ∼ 0 to z ∼ 3 provides an important new tool in cosmology; it can be used to break degeneracies that exist at z ∼ 0 and provide precise determination of cosmological parameters.

Original languageEnglish (US)
Pages (from-to)1-6
Number of pages6
JournalAstrophysical Journal
Volume603
Issue number1 I
DOIs
StatePublished - Mar 1 2004

Fingerprint

cosmology
mass distribution
format
prediction
slopes
simulation
radii
predictions
comparison
distribution
parameter

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Space and Planetary Science

Cite this

Bahcall, Neta ; Lei, H. A O ; Bode, Paul ; Dong, Feng. / Evolution of the cluster correlation function. In: Astrophysical Journal. 2004 ; Vol. 603, No. 1 I. pp. 1-6.
@article{b7ca08128469499fa642007c7bb1fbb0,
title = "Evolution of the cluster correlation function",
abstract = "We study the evolution of the cluster correlation function and its richness dependence from z = 0 to z = 3 using large-scale cosmological simulations. A standard flat LCDM model with Ωm = 0.3 and, for comparison, a tilted Ωm = 1 model (TSCDM) are used. The evolutionary predictions are presented in a format suitable for direct comparisons with observations. We find that the cluster correlation strength increases with redshift: high-redshift clusters are clustered more strongly (on a comoving scale) than low-redshift clusters of the same mass. The increased correlation with redshift, in spite of the decreasing mass correlation strength, is caused by the strong increase in cluster bias with redshift: clusters represent higher density peaks of the mass distribution as the redshift increases. The richness-dependent cluster correlation function, presented as the correlation scale versus cluster mean separation relation, R0-d, is found to be, remarkably, independent of redshift to z ≲ 2 for LCDM and z ≲ 1 for TSCDM for a fixed correlation function slope and a cluster mass within a fixed comoving radius. The nonevolving R0-d relation implies that both the comoving clustering scale and the cluster mean separation increase with redshift for the same mass clusters, so that the R0-d relation remains essentially unchanged. For LCDM, this relation is R0(Z) ≃ 2.6[d(z}]1/2 for z ≲ 2 in comoving h-1 Mpc scales. The TSCDM model has smaller correlation scales, as expected. Evolution in the relation is seen at z ≳ 2 for LCDM and z ≳ 1 for TSCDM, where the amplitude of the relations declines. The evolution of the R0-d relation from z ∼ 0 to z ∼ 3 provides an important new tool in cosmology; it can be used to break degeneracies that exist at z ∼ 0 and provide precise determination of cosmological parameters.",
author = "Neta Bahcall and Lei, {H. A O} and Paul Bode and Feng Dong",
year = "2004",
month = "3",
day = "1",
doi = "https://doi.org/10.1086/381386",
language = "English (US)",
volume = "603",
pages = "1--6",
journal = "Astrophysical Journal",
issn = "0004-637X",
publisher = "IOP Publishing Ltd.",
number = "1 I",

}

Evolution of the cluster correlation function. / Bahcall, Neta; Lei, H. A O; Bode, Paul; Dong, Feng.

In: Astrophysical Journal, Vol. 603, No. 1 I, 01.03.2004, p. 1-6.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Evolution of the cluster correlation function

AU - Bahcall, Neta

AU - Lei, H. A O

AU - Bode, Paul

AU - Dong, Feng

PY - 2004/3/1

Y1 - 2004/3/1

N2 - We study the evolution of the cluster correlation function and its richness dependence from z = 0 to z = 3 using large-scale cosmological simulations. A standard flat LCDM model with Ωm = 0.3 and, for comparison, a tilted Ωm = 1 model (TSCDM) are used. The evolutionary predictions are presented in a format suitable for direct comparisons with observations. We find that the cluster correlation strength increases with redshift: high-redshift clusters are clustered more strongly (on a comoving scale) than low-redshift clusters of the same mass. The increased correlation with redshift, in spite of the decreasing mass correlation strength, is caused by the strong increase in cluster bias with redshift: clusters represent higher density peaks of the mass distribution as the redshift increases. The richness-dependent cluster correlation function, presented as the correlation scale versus cluster mean separation relation, R0-d, is found to be, remarkably, independent of redshift to z ≲ 2 for LCDM and z ≲ 1 for TSCDM for a fixed correlation function slope and a cluster mass within a fixed comoving radius. The nonevolving R0-d relation implies that both the comoving clustering scale and the cluster mean separation increase with redshift for the same mass clusters, so that the R0-d relation remains essentially unchanged. For LCDM, this relation is R0(Z) ≃ 2.6[d(z}]1/2 for z ≲ 2 in comoving h-1 Mpc scales. The TSCDM model has smaller correlation scales, as expected. Evolution in the relation is seen at z ≳ 2 for LCDM and z ≳ 1 for TSCDM, where the amplitude of the relations declines. The evolution of the R0-d relation from z ∼ 0 to z ∼ 3 provides an important new tool in cosmology; it can be used to break degeneracies that exist at z ∼ 0 and provide precise determination of cosmological parameters.

AB - We study the evolution of the cluster correlation function and its richness dependence from z = 0 to z = 3 using large-scale cosmological simulations. A standard flat LCDM model with Ωm = 0.3 and, for comparison, a tilted Ωm = 1 model (TSCDM) are used. The evolutionary predictions are presented in a format suitable for direct comparisons with observations. We find that the cluster correlation strength increases with redshift: high-redshift clusters are clustered more strongly (on a comoving scale) than low-redshift clusters of the same mass. The increased correlation with redshift, in spite of the decreasing mass correlation strength, is caused by the strong increase in cluster bias with redshift: clusters represent higher density peaks of the mass distribution as the redshift increases. The richness-dependent cluster correlation function, presented as the correlation scale versus cluster mean separation relation, R0-d, is found to be, remarkably, independent of redshift to z ≲ 2 for LCDM and z ≲ 1 for TSCDM for a fixed correlation function slope and a cluster mass within a fixed comoving radius. The nonevolving R0-d relation implies that both the comoving clustering scale and the cluster mean separation increase with redshift for the same mass clusters, so that the R0-d relation remains essentially unchanged. For LCDM, this relation is R0(Z) ≃ 2.6[d(z}]1/2 for z ≲ 2 in comoving h-1 Mpc scales. The TSCDM model has smaller correlation scales, as expected. Evolution in the relation is seen at z ≳ 2 for LCDM and z ≳ 1 for TSCDM, where the amplitude of the relations declines. The evolution of the R0-d relation from z ∼ 0 to z ∼ 3 provides an important new tool in cosmology; it can be used to break degeneracies that exist at z ∼ 0 and provide precise determination of cosmological parameters.

UR - http://www.scopus.com/inward/record.url?scp=2142655975&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=2142655975&partnerID=8YFLogxK

U2 - https://doi.org/10.1086/381386

DO - https://doi.org/10.1086/381386

M3 - Article

VL - 603

SP - 1

EP - 6

JO - Astrophysical Journal

JF - Astrophysical Journal

SN - 0004-637X

IS - 1 I

ER -