@inproceedings{a400a9ff601c4b5ba328eb2e500e3f0c,
title = "Experiments with Spectral Learning of Latent-Variable PCFGs",
abstract = "Latent-variable PCFGs (L-PCFGs) are a highly successful model for natural language parsing. Recent work (Cohen et al., 2012) has introduced a spectral algorithm for parameter estimation of L-PCFGs, which—unlike the EM algorithm—is guaranteed to give consistent parameter estimates (it has PAC-style guarantees of sample complexity). This paper describes experiments using the spectral algorithm. We show that the algorithm provides models with the same accuracy as EM, but is an order of magnitude more efficient. We describe a number of key steps used to obtain this level of performance; these should be relevant to other work on the application of spectral learning algorithms. We view our results as strong empirical evidence for the viability of spectral methods as an alternative to EM.",
author = "Cohen, {Shay B.} and Karl Stratos and Michael Collins and Foster, {Dean P.} and Lyle Ungar",
note = "Publisher Copyright: {\textcopyright} 2013 Association for Computational Linguistics.; 2nd Workshop on Computational Linguistics for Literature, CLfL 2013 at the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2013 ; Conference date: 14-06-2013",
year = "2013",
language = "American English",
series = "Proceedings of the 2nd Workshop on Computational Linguistics for Literature, CLfL 2013 at the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2013",
publisher = "Association for Computational Linguistics (ACL)",
pages = "148--157",
editor = "David Elson and Anna Kazantseva and Stan Szpakowicz",
booktitle = "Proceedings of the 2nd Workshop on Computational Linguistics for Literature, CLfL 2013 at the 2013 Conference of the North American Chapter of the Association for Computational Linguistics",
}