Exploring the Dynamics of Latent Variable Models

Kevin Reuning, Michael R. Kenwick, Christopher J. Fariss

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Researchers face a tradeoff when applying latent variable models to time-series, cross-sectional data. Static models minimize bias but assume data are temporally independent, resulting in a loss of efficiency. Dynamic models explicitly model temporal data structures, but smooth estimates of the latent trait across time, resulting in bias when the latent trait changes rapidly. We address this tradeoff by investigating a new approach for modeling and evaluating latent variable estimates: a robust dynamic model. The robust model is capable of minimizing bias and accommodating volatile changes in the latent trait. Simulations demonstrate that the robust model outperforms other models when the underlying latent trait is subject to rapid change, and is equivalent to the dynamic model in the absence of volatility. We reproduce latent estimates from studies of judicial ideology and democracy. For judicial ideology, the robust model uncovers shocks in judicial voting patterns that were not previously identified in the dynamic model. For democracy, the robust model provides more precise estimates of sudden institutional changes such as the imposition of martial law in the Philippines (1972-1981) and the short-lived Saur Revolution in Afghanistan (1978). Overall, the robust model is a useful alternative to the standard dynamic model for modeling latent traits that change rapidly over time.

Original languageEnglish (US)
Pages (from-to)503-517
Number of pages15
JournalPolitical Analysis
Volume27
Issue number4
DOIs
StatePublished - Oct 1 2019

All Science Journal Classification (ASJC) codes

  • Political Science and International Relations
  • Sociology and Political Science

Keywords

  • Bayesian analysis
  • dynamic modeling
  • latent variables

Fingerprint

Dive into the research topics of 'Exploring the Dynamics of Latent Variable Models'. Together they form a unique fingerprint.

Cite this