TY - JOUR
T1 - Follow-up ecological studies for cryptic species discoveries
T2 - Decrypting the leopard frogs of the eastern U.S.
AU - Schlesinger, Matthew D.
AU - Feinberg, Jeremy A.
AU - Nazdrowicz, Nathan H.
AU - Kleopfer, J. D.
AU - Beane, Jeffrey C.
AU - Bunnell, John F.
AU - Burger, Joanna
AU - Corey, Edward
AU - Gipe, Kathy
AU - Jaycox, Jesse W.
AU - Kiviat, Erik
AU - Kubel, Jacob
AU - Quinn, Dennis P.
AU - Raithel, Christopher
AU - Scott, Peter A.
AU - Wenner, Sarah M.
AU - White, Erin L.
AU - Zarate, Brian
AU - Shaffer, H. Bradley
N1 - Funding Information: This study was funded by the Northeast Association of Fish and Wildlife Agencies as Regional Conservation Needs grant 2013-03, administered by the Wildlife Management Institute, with matching funds and in-kind from the authors’ institutions. J. Feinberg, J. Burger, and E. Kiviat were also supported by grants from the Hudson River Foundation, and B. Shaffer and S. Wenner by the NSF (DEB 1239961). The funders provided support in the form of salaries for authors [MDS, JAF, NHN, JB, EK, SMW, HBS], but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the ‘author contributions’ section. EK and DPQ are affiliated with Hudsonia, Ltd. and CTHerpConsultant, LLC, respectively. The commercial affiliations of these two authors did not play any role in the study. This study, covering 10 US states, could not have been accomplished without a large network of professional and citizen biologists, plus a great deal of administrative help. For contributing field observation data and conducting surveys, we thank Sarah Acosta, Robert Andrle, Susan Andrle, Scott Angus, Patrick Burritt, Brian Bastarache, Dan Becker, Cliff Bernzweig, Randy Best, Amy Bloomfield, Mike Bottini, Al Breisch, Darnell Brister, Jennifer Brooks, Charlie Brown, Virginia Brown, Jenn Carlino, Andrea Chaloux, Chris Chapin, Charles Clarkson, Susanne Colten-Carey, JoAnn Corn, Marlin Corn, Jeff Corser, Brian Curry, Adrienne DenTex, Damon DePaolo, Kimberly DePaolo, Calum Devaney, Emily Dombroski, Sam Droege, Kaitlyn Friedman, Cait Field, Dave Fitzpatrick, Suzie Fowle, Nicole Gerard, Tony Gola, Chris Graham, Tim Green, Hank Gruner, Molly Hale, Jeff Hall, Vanessa Hartmann, Shaun Hicks, Stephanie Jennings, Meghan Jackson, Joe Janssen, Lori Johnson, Steve Johnson, Lindsay Keener-Eck, Judy Kelley-Moberg, Michael Klemens, Rory Larson, Darren Loomis, Kim Laidig, Kyle Loucks, Niklas Lowe, Rebecca French-Mesch, Annie McIntyre, Kristen Meistrell, Brian Munford, Beth Nicholls, Colin Osborn, Joe Pane, Ellen Pehek, Kelly Perkins, Andrea Petrullo, Bill Pitts, Eli Pitts, Justin Proctor, Richard Rego, Chris Rezendes, Sarah Riley, Richard Ring, Marc Rivadeneyra, Barrie Robbins-Pianka, Sarah Johnson, James Shelton, Nate Silver, Iain Sorrell, Renee St. Amand, Steven Straiton, Kelly Triece, Tom Tyning, Jim Utter, Rene Wendell, Jay Westerveld, Jim White, and Olivia Zukas. Steve Gotte, Toby Hibbitts, Susan Hochgraf, David Kizirian, Roy McDiarmid, James Poindexter, Jose Rosado, Laura Smyk, Ken Tighe, and Gregory Watkins-Colwell facilitated access to museum specimens or provided photographs. Tim Howard, Amy Conley, and other colleagues at the New York, Pennsylvania, Virginia, and Florida Natural Heritage programs compiled environmental data and scripts for species distribution modeling. For administrative support, we thank D.J. Evans, Fiona McKinney, Chris Urban, and the Research Foundation for SUNY. Hank Gruner, Michael Klemens, and an anonymous reviewer provided helpful feedback on a draft manuscript. Publisher Copyright: © 2018 Schlesinger et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2018/11
Y1 - 2018/11
N2 - Cryptic species are a challenge for systematics, but their elucidation also may leave critical information gaps about the distribution, conservation status, and behavior of affected species. We use the leopard frogs of the eastern U.S. as a case study of this issue. We refined the known range of the recently described Rana kauffeldi, the Atlantic Coast Leopard Frog, relative to the region’s two other leopard frog species, conducted assessments of conservation status, and improved methods for separating the three species using morphological field characters. We conducted over 2,000 call and visual surveys and took photographs of and tissue samples from hundreds of frogs. Genetic analysis supported a three-species taxonomy and provided determinations for 220 individual photographed frogs. Rana kauffeldi was confirmed in eight U.S. states, from North Carolina to southern Connecticut, hewing closely to the Atlantic Coastal Plain. It can be reliably differentiated in life from R. pipiens, and from R. sphenocephala 90% of the time, based on such characters as the femoral reticulum patterning, dorsal spot size and number, and presence of a snout spot. However, the only diagnostic character separating R. kauffeldi from R. sphenocephala remains the breeding call described in 2014. Based on our field study, museum specimens, and prior survey data, we suggest that R. kauffeldi has declined substantially in the northern part of its range, but is more secure in the core of its range. We also report, for the first time, apparent extirpations of R. pipiens from the southeastern portion of its range, previously overlooked because of confusion with R. kauffeldi. We conclude with a generalized ecological research agenda for cryptic species. For R. kauffeldi, needs include descriptions of earlier life stages, studies of niche partitioning with sympatric congeners and the potential for hybridization, and identification of conservation actions to prevent further declines.
AB - Cryptic species are a challenge for systematics, but their elucidation also may leave critical information gaps about the distribution, conservation status, and behavior of affected species. We use the leopard frogs of the eastern U.S. as a case study of this issue. We refined the known range of the recently described Rana kauffeldi, the Atlantic Coast Leopard Frog, relative to the region’s two other leopard frog species, conducted assessments of conservation status, and improved methods for separating the three species using morphological field characters. We conducted over 2,000 call and visual surveys and took photographs of and tissue samples from hundreds of frogs. Genetic analysis supported a three-species taxonomy and provided determinations for 220 individual photographed frogs. Rana kauffeldi was confirmed in eight U.S. states, from North Carolina to southern Connecticut, hewing closely to the Atlantic Coastal Plain. It can be reliably differentiated in life from R. pipiens, and from R. sphenocephala 90% of the time, based on such characters as the femoral reticulum patterning, dorsal spot size and number, and presence of a snout spot. However, the only diagnostic character separating R. kauffeldi from R. sphenocephala remains the breeding call described in 2014. Based on our field study, museum specimens, and prior survey data, we suggest that R. kauffeldi has declined substantially in the northern part of its range, but is more secure in the core of its range. We also report, for the first time, apparent extirpations of R. pipiens from the southeastern portion of its range, previously overlooked because of confusion with R. kauffeldi. We conclude with a generalized ecological research agenda for cryptic species. For R. kauffeldi, needs include descriptions of earlier life stages, studies of niche partitioning with sympatric congeners and the potential for hybridization, and identification of conservation actions to prevent further declines.
UR - http://www.scopus.com/inward/record.url?scp=85056414662&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056414662&partnerID=8YFLogxK
U2 - https://doi.org/10.1371/journal.pone.0205805
DO - https://doi.org/10.1371/journal.pone.0205805
M3 - Article
C2 - 30412587
VL - 13
JO - PloS one
JF - PloS one
SN - 1932-6203
IS - 11
M1 - e0205805
ER -