Fourier-Transform Infrared Studies of CaATPase Partitioning in Phospholipid Mixtures of l,2-Dipalmitoylphosphatidylcholine-d62 with 1 -Palmitoyl-2-oleoylphosphatidylethanolamine and l-Stearoyl-2-oleoylphosphatidylcholine

M. Jaworsky, R. Mendelsohn

Research output: Contribution to journalArticle

31 Scopus citations

Abstract

CaATPase from rabbit sarcoplasmic reticulum has been reconstituted into binary lipid mixtures of 1 -palmitoyl-2-oleoylphosphatidylethanolamine (POPE) /1,2-dipalmitoylphosphatidylcholine-d62 (DPPC-d62) and l-stearoyl-2-oleoylphosphatidylcholine (SOPC)/DPPC-d62. Fourier-transform infrared (FT-IR) spectroscopy has been used to monitor temperature-induced structural alterations in the individual lipid components in the presence and absence of protein. A simple two-state model is used to construct a phase diagram that is in good agreement with one constructed from differential scanning calorimetry data, for the POPE/DPPC-d62 (protein-free) system. Although these two lipids are miscible over at least most of the composition range, substantial deviations from ideal behavior are observed. An estimate of the nonideality of mixing in both the gel and liquid-crystalline phases is obtained from regular solution theory. The phase diagram for SOPC/DPPC-d62 shows gel-phase immiscibility. FT-IR studies of ternary (POPE/DPPC-d62/CaATPase) complexes indicate that both lipid components are disordered by protein at all temperatures studied. In addition, their melting events are broadened and shifted to lower temperatures compared with the appropriate binary lipid mixture. Semiquantitative estimates for the fraction of each lipid melted are obtained from the model. The effect of protein on SOPC/DPPC-d62 mixtures depends on the total lipid to protein ratio. At low protein levels, SOPC is preferentially selected by CaATPase, so that bulk lipid is enriched in DPPC-d62. At high levels of protein, both lipid components are selected. The applicability of vibrational spectroscopy for determination of the partitioning preferences of membrane proteins into regions of particular chemical structure or physical order in a complex lipid environment is demonstrated.

Original languageEnglish (US)
Pages (from-to)3422-3428
Number of pages7
JournalBiochemistry
Volume24
Issue number14
DOIs
StatePublished - Jul 1 1985

All Science Journal Classification (ASJC) codes

  • Biochemistry

Fingerprint Dive into the research topics of 'Fourier-Transform Infrared Studies of CaATPase Partitioning in Phospholipid Mixtures of l,2-Dipalmitoylphosphatidylcholine-d62 with 1 -Palmitoyl-2-oleoylphosphatidylethanolamine and l-Stearoyl-2-oleoylphosphatidylcholine'. Together they form a unique fingerprint.

  • Cite this