Fragile X Syndrome FMRP Co-localizes with Regulatory Targets PSD-95, GABA Receptors, CaMKIIα, and mGluR5 at Fiber Cell Membranes in the Eye Lens

Peter H. Frederikse, Anoop Nandanoor, Chinnaswamy Kasinathan

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Fmr1 and FMRP underlie Fragile X Syndrome (FXS) and are linked with related autism spectrum disorders (ASD). Fmr1 also has an essential role in eye and lens development. Lenses express FMRP along with γ-aminobutyric acid (GABA) receptors (GABARs), post-synaptic density protein 95 (PSD-95), Tyr-phosphatase STEP, CaMKIIα and Alzheimer’s disease Aβ precursor protein, which are verified targets of FMRP regulation in neurons and outline major topics in FXS/ASD research. PSD-95 as well as CaMKIIα transcripts undergo polypryimidine tract binding protein dependent alternative splicing in lens, consistent with PSD-95 translation in lens. At least 13 GABAR subunits and GAD25/65/67 GABA metabolism enzymes are expressed in lenses beginning in embryonic development, matching neural development. Interestingly, GABAergic drugs (e.g. baclofen) studied as FXS/ASD therapeutics are shown to resolve developmental vision defects in experimental myopia. Here, we demonstrated that FMRP co-localizes at fiber cell membranes with PSD-95, GABAAδ, GABAAβ3, GABBR1, STEP, CaMKIIα, and mGluR5 in young adult lenses. GAD65 and GABA detection was greatest at the peri-nuclear lens region where fiber cell terminal differentiation occurs. These findings add to an extensive list of detailed parallels between fiber cell and neuron morphology and their lateral membrane spine/protrusions, also reflected in the shared expression of genes involved in the morphogenesis and function of these membrane structures, and shared use of associated regulatory mechanisms first described as distinguishing the neuronal phenotype. Future studies can determine if GABA levels currently studied as a FXS/ASD biomarker in the brain, and generated by GAD25/65/67 in a comparable cell environment in the lens, may be similarly responsive to Fmr1 mutation in lens. The present demonstration of FMRP and key regulatory targets in the lens identifies a potential for the lens to provide a new research venue, in the same individual, to inform about Fmr1/FMRP pathobiology in brain as well as lens.

Original languageEnglish (US)
Pages (from-to)2167-2176
Number of pages10
JournalNeurochemical Research
Volume40
Issue number11
DOIs
StatePublished - Nov 1 2015

ASJC Scopus subject areas

  • Biochemistry
  • Cellular and Molecular Neuroscience

Keywords

  • Fragile X mental retardation protein
  • Fragile X syndrome
  • Gene expression
  • Lens
  • Model system
  • Neurodevelopment

Fingerprint

Dive into the research topics of 'Fragile X Syndrome FMRP Co-localizes with Regulatory Targets PSD-95, GABA Receptors, CaMKIIα, and mGluR5 at Fiber Cell Membranes in the Eye Lens'. Together they form a unique fingerprint.

Cite this