Freehand OCT with real-time lateral motion tracking

Xuan Liu, Yong Huang, Peter Gehlbach, Jin U. Kang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Freehand optical coherence tomography (OCT) systems without mechanical scanners can offer greater freedom to access and image sites of interest. However, the scanning velocity during freehand scan is irregular; therefore pseudo B-scan images obtained by stacking sequentially acquired A-scans have a non-uniform spatial sampling rate in the lateral dimension. In this study, we developed a speckle decorrelation method to estimate lateral displacement between sequentially acquired A-scans and used the information extracted from speckle analysis to correct the time-varying lateral scanning speed. We applied this method to a handheld OCT probe and performed calibration experiments to validate our model. Furthermore we demonstrated distortion-free, freehand OCT imaging of various samples including human tissue, in vivo.

Original languageEnglish (US)
Title of host publicationOptical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVII
Volume8571
DOIs
StatePublished - May 22 2013
Externally publishedYes
EventOptical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVII - San Francisco, CA, United States
Duration: Feb 4 2013Feb 6 2013

Other

OtherOptical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVII
Country/TerritoryUnited States
CitySan Francisco, CA
Period2/4/132/6/13

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging
  • Biomaterials

Fingerprint

Dive into the research topics of 'Freehand OCT with real-time lateral motion tracking'. Together they form a unique fingerprint.

Cite this