FTIR microspectroscopic analysis of human osteonal bone

E. P. Paschalis, E. DiCarlo, F. Betts, P. Sherman, R. Mendelsohn, A. L. Boskey

Research output: Contribution to journalArticlepeer-review

324 Scopus citations

Abstract

Fourier Transform Infrared Microspectroscopy (FTIRM) has been used to study the changes in mineral and matrix content and composition in replicate biopsies of nonosteoporotic human osteonal bone. Spectral maps in four orthogonal directions (in 10 μm steps) from the centers towards the peripheries of individual osteons were obtained from lilac crest biopsies of two necropsy cases. Mineral to matrix ratios, calculated from the ratio of integrated areas of the phosphate v1,v3 band at 900-1200 cm-1 to the amide 1 band at 1585-1725 cm-1 increased from the center to the periphery of the osteon. The total carbonate (based on the v2 band at ≃850-900 cm- 1) to phosphate v1,v3 ratio decreased as the mineral to matrix ratio increased. Analysis of the v2 CO32- band with a combination of second- derivative spectroscopy and curve fitting revealed a decrease in 'labile' carbonate, a slight decrease in Type A and a slight increase in Type B carbonate from the center to the periphery of the osteon. Similar analysis of the components of the v1,v3 phosphate band with a combination of second- derivative spectroscopy and curve fitting revealed the presence of 11 major underlying moieties. These components were assigned by comparison with published frequencies for apatite and acid-phosphate containing calcium phosphates. The most consistent variations were alterations in the relative percent areas of bands at ≃1020 and ≃1030 cm-1, which had previously been assigned to nonstoichiometric and stoichiometric apatites, respectively. This ratio was used as an index of variation in crystal perfection throughout the osteon. This ratio decreased as the mineral to matrix ratio increased. The reproducibility of these parameters at multiple sites in multiple biopsies suggests their applicability for the analysis of mineral changes in disease.

Original languageEnglish (US)
Pages (from-to)480-487
Number of pages8
JournalCalcified Tissue International
Volume59
Issue number6
DOIs
StatePublished - Dec 1996

All Science Journal Classification (ASJC) codes

  • Endocrinology
  • Endocrinology, Diabetes and Metabolism
  • Orthopedics and Sports Medicine

Keywords

  • Bone apatites
  • Bone mineral
  • Calcium phosphates
  • FTIR microspectroscopy
  • Osteon

Fingerprint

Dive into the research topics of 'FTIR microspectroscopic analysis of human osteonal bone'. Together they form a unique fingerprint.

Cite this