Abstract
We review a modern differential geometric description of fluid isentropic motion and features of it including diffeomorphism group structure, modelling the related dynamics, as well as its compatibility with the quasi-stationary thermodynamical constraints. We analyze the adiabatic liquid dynamics, within which, following the general approach, the nature of the related Poissonian structure on the fluid motion phase space as a semidirect Banach groups product, and a natural reduction of the canonical symplectic structure on its cotangent space to the classical Lie-Poisson bracket on the adjoint space to the corresponding semidirect Lie algebras product are explained in detail. We also present a modification of the Hamiltonian analysis in case of a flow governed by isothermal liquid dynamics. We study the differential-geometric structure of isentropic magneto-hydrodynamic superfluid phase space and its related motion within the Hamiltonian analysis and related invariant theory. In particular, we construct an infinite hierarchy of different kinds of integral magneto-hydrodynamic invariants, generalizing those previously constructed in the literature, and analyzing their differential-geometric origins. A charged liquid dynamics on the phase space invariant with respect to an abelian gauge group transformation is also investigated, and some generalizations of the canonical Lie-Poisson type bracket is presented.
Original language | English (US) |
---|---|
Article number | 1241 |
Pages (from-to) | 1-26 |
Number of pages | 26 |
Journal | Entropy |
Volume | 22 |
Issue number | 11 |
DOIs | |
State | Published - Nov 2020 |
All Science Journal Classification (ASJC) codes
- Information Systems
- Mathematical Physics
- Physics and Astronomy (miscellaneous)
- Electrical and Electronic Engineering
Keywords
- Charged liquid fluid dynamics
- Diffeomorphism group
- Hydrodynamic Euler equations
- Isentropic hydrodynamic invariants
- Lie-Poisson structure
- Liquid flow
- Symmetry reduction
- Vortex invariants