How do people solve the "weather prediction" task? Individual variability in strategies for probabilistic category learning

Research output: Contribution to journalArticlepeer-review

179 Scopus citations

Abstract

Probabilistic category learning is often assumed to be an incrementally learned cognitive skill, dependent on nondeclarative memory systems. One paradigm in particular, the weather prediction task, has been used in over half a dozen neuropsychological and neuroimaging studies to date. Because of the growing interest in using this task and others like it as behavioral tools for studying the cognitive neuroscience of cognitive skill learning, it becomes especially important to understand how subjects solve this kind of task and whether all subjects learn it in the same way. We present here new experimental and theoretical analyses of the weather prediction task that indicate that there are at least three different strategies that describe how subjects learn this task. (1) An optimal multi-cue strategy, in which they respond to each pattern on the basis of associations of all four cues with each outcome; (2) a one-cue strategy, in which they respond on the basis of presence or absence of a single cue, disregarding all other cues; or (3) a singleton strategy, in which they learn only about the four patterns that have only one cue present and all others absent. This variability in how subjects approach this task may have important implications for interpreting how different brain regions are involved in probabilistic category learning.

Original languageEnglish (US)
Pages (from-to)408-418
Number of pages11
JournalLearning and Memory
Volume9
Issue number6
DOIs
StatePublished - Nov 2002

All Science Journal Classification (ASJC) codes

  • Neuropsychology and Physiological Psychology
  • Cellular and Molecular Neuroscience
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'How do people solve the "weather prediction" task? Individual variability in strategies for probabilistic category learning'. Together they form a unique fingerprint.

Cite this