TY - JOUR
T1 - Largest entries of sample correlation matrices from equi-correlated normal populations
AU - Fan, Jianqing
AU - Jiang, Tiefeng
N1 - Funding Information: 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3322 2. Main results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3324 2.1. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3324 2.2. Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3326 2.3. An application to a high-dimensional test . . . . . . . . . . . . . . . . . . . . . . . . . 3328 3. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3329 3.1. Some technical tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3329 3.2. Proofs of Theorems 2.1 and 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3337 3.3. The proof of Proposition 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3349 3.4. The proof of Proposition 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3358 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3373 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3373 Received September 2017; revised January 2019. 1Supported by NSF Grants DMS-1406266 and DMS-1712591. 2Supported by NSF Grant DMS-1406279. MSC2010 subject classifications. Primary 62H10, 62E20; secondary 60F05. Key words and phrases. Maximum sample correlation, phase transition, multivariate normal distribution, Gumbel distribution, Chen–Stein Poisson approximation. Publisher Copyright: © Institute of Mathematical Statistics, 2019.
PY - 2019/9/1
Y1 - 2019/9/1
N2 - The paper studies the limiting distribution of the largest off-diagonal entry of the sample correlation matrices of high-dimensional Gaussian populations with equi-correlation structure. Assume the entries of the population distribution have a common correlation coefficient ρ >0 and both the population dimension p and the sample size n tend to infinity with logp = o(n1/3). As 0<ρ <1, we prove that the largest off-diagonal entry of the sample correlation matrix converges to a Gaussian distribution, and the same is true for the sample covariance matrix as 0<ρ <1/2. This differs substantially from a well-known result for the independent case where ρ = 0, in which the above limiting distribution is an extreme-value distribution. We then study the phase transition between these two limiting distributions and identify the regime of ρ where the transition occurs. If ρ is less than, larger than or is equal to the threshold, the corresponding limiting distribution is the extreme-value distribution, the Gaussian distribution and a convolution of the two distributions, respectively. The proofs rely on a subtle use of the Chen-Stein Poisson approximation method, conditioning, a coupling to create independence and a special property of sample correlation matrices. An application is given for a statistical testing problem.
AB - The paper studies the limiting distribution of the largest off-diagonal entry of the sample correlation matrices of high-dimensional Gaussian populations with equi-correlation structure. Assume the entries of the population distribution have a common correlation coefficient ρ >0 and both the population dimension p and the sample size n tend to infinity with logp = o(n1/3). As 0<ρ <1, we prove that the largest off-diagonal entry of the sample correlation matrix converges to a Gaussian distribution, and the same is true for the sample covariance matrix as 0<ρ <1/2. This differs substantially from a well-known result for the independent case where ρ = 0, in which the above limiting distribution is an extreme-value distribution. We then study the phase transition between these two limiting distributions and identify the regime of ρ where the transition occurs. If ρ is less than, larger than or is equal to the threshold, the corresponding limiting distribution is the extreme-value distribution, the Gaussian distribution and a convolution of the two distributions, respectively. The proofs rely on a subtle use of the Chen-Stein Poisson approximation method, conditioning, a coupling to create independence and a special property of sample correlation matrices. An application is given for a statistical testing problem.
KW - Chen-stein poisson approximation
KW - Gumbel distribution
KW - Maximum sample correlation
KW - Multivariate normal distribution
KW - Phase transition
UR - http://www.scopus.com/inward/record.url?scp=85074829785&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074829785&partnerID=8YFLogxK
U2 - https://doi.org/10.1214/19-AOP1341
DO - https://doi.org/10.1214/19-AOP1341
M3 - Article
VL - 47
SP - 3321
EP - 3374
JO - Annals of Probability
JF - Annals of Probability
SN - 0091-1798
IS - 5
ER -