Malnormality is decidable in free groups

Gilbert Baumslag, Alexei Miasnikov, Vladimir Remeslennikov

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

We prove here that there is an algorithm whereby one can decide whether or not any finitely generated subgroup of a finitely generated free group is malnormal.

Original languageEnglish (US)
Pages (from-to)687-692
Number of pages6
JournalInternational Journal of Algebra and Computation
Volume9
Issue number6
DOIs
StatePublished - Jan 1 1999
Externally publishedYes

Fingerprint

Finitely Generated Group
Free Group
Finitely Generated
Subgroup

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

Baumslag, Gilbert ; Miasnikov, Alexei ; Remeslennikov, Vladimir. / Malnormality is decidable in free groups. In: International Journal of Algebra and Computation. 1999 ; Vol. 9, No. 6. pp. 687-692.
@article{8da37e73977348568e0ca1f160700cc0,
title = "Malnormality is decidable in free groups",
abstract = "We prove here that there is an algorithm whereby one can decide whether or not any finitely generated subgroup of a finitely generated free group is malnormal.",
author = "Gilbert Baumslag and Alexei Miasnikov and Vladimir Remeslennikov",
year = "1999",
month = "1",
day = "1",
doi = "https://doi.org/10.1142/S0218196799000382",
language = "English (US)",
volume = "9",
pages = "687--692",
journal = "International Journal of Algebra and Computation",
issn = "0218-1967",
publisher = "World Scientific Publishing Co. Pte Ltd",
number = "6",

}

Malnormality is decidable in free groups. / Baumslag, Gilbert; Miasnikov, Alexei; Remeslennikov, Vladimir.

In: International Journal of Algebra and Computation, Vol. 9, No. 6, 01.01.1999, p. 687-692.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Malnormality is decidable in free groups

AU - Baumslag, Gilbert

AU - Miasnikov, Alexei

AU - Remeslennikov, Vladimir

PY - 1999/1/1

Y1 - 1999/1/1

N2 - We prove here that there is an algorithm whereby one can decide whether or not any finitely generated subgroup of a finitely generated free group is malnormal.

AB - We prove here that there is an algorithm whereby one can decide whether or not any finitely generated subgroup of a finitely generated free group is malnormal.

UR - http://www.scopus.com/inward/record.url?scp=0033276098&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033276098&partnerID=8YFLogxK

U2 - https://doi.org/10.1142/S0218196799000382

DO - https://doi.org/10.1142/S0218196799000382

M3 - Article

VL - 9

SP - 687

EP - 692

JO - International Journal of Algebra and Computation

JF - International Journal of Algebra and Computation

SN - 0218-1967

IS - 6

ER -