Massively parallel quantum chromodynamics

Pavlos Vranas, Matthias A. Blumrich, Dong Chen, Alan Gara, Mark E. Giampapa, Philip Heidelberger, Valentina Salapura, James C. Sexton, Ron Soltz, Gyan Bhanot

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Quantum chromodynamics (QCD), the theory of the strong nuclear force, can be numerically simulated on massively parallel supercomputers using the method of lattice gauge theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures for which LQCD suggests a need. We demonstrate these methods on the IBM Blue Gene/L™ (BG/L) massively parallel supercomputer and argue that the BG/L architecture is very well suitedfor LQCD studies. This suitability arises from the fact that LQCD is a regular lattice discretization of space into lattice sites, while the BG/L supercomputer is a discretization of space into compute nodes. Both LQCD and the BG/L architecture are constrained by the requirement of short-distance exchanges. This simple relation 6 technologically important and theoretically intriguing. We demonstrate a computational speedup of LQCD using up to 131,072 CPUs on the largest BG/L supercomputer available in 2007. As the number of CPUs is increased, the speedup increases linearly with sustained performance of about 20% of the maximum possible hardware speed. This corresponds to a maximum of 70.5 sustained teraflops. At these speeds, LQCD and the BG/L supercomputer are able to produce theoretical results for the next generation of strong-interaction physics.

Original languageEnglish (US)
Pages (from-to)189-198
Number of pages10
JournalIBM Journal of Research and Development
Volume52
Issue number1-2
DOIs
StatePublished - 2008

All Science Journal Classification (ASJC) codes

  • Computer Science(all)

Fingerprint

Dive into the research topics of 'Massively parallel quantum chromodynamics'. Together they form a unique fingerprint.

Cite this