TY - JOUR
T1 - Measurement and Modeling of Thermo-Hydro-Mechanical Behaviors of Frozen Clays
T2 - Frost Susceptibility and Compressibility
AU - Cai, Weiling
AU - Zhu, Cheng
AU - Lein, Wade
N1 - Publisher Copyright: © The Author(s) 2024.
PY - 2024
Y1 - 2024
N2 - The risk of geohazards associated with frozen subgrades is well recognized, but a comprehensive framework to evaluate frost susceptibility from microstructural characteristics to macroscopic thermo-hydro-mechanical (THM) behaviors has not been established. This study aims to propose a simple framework for quantitatively assessing frost susceptibility and compressibility in frozen soils. A systematic THM model was devised to predict heat transfer, soil freezing characteristics, and stress states in frozen soils. Constant freezing experiments and oedometer compression tests were performed on bentonite clays under varying temperatures (−5°C, −10°C, and −20°C) and stress levels to validate the proposed model. Additionally, soil electrical conductivity measurements were employed to assess the temperature- and stress-dependent volumetric and mechanical properties of frozen soils. The model used Fourier’s law to compute the transient soil temperature profile and estimated the volume change and stress states based on the soil freezing characteristic curve. Experimental results showed that frost heave of bentonite reached between 9.0% and 26.6% of axial strain, which was largely predicted by the proposed model. It also demonstrated that the frost heave was mainly attributed to the fusion of the porewater. Additionally, the preconsolidation pressure of frozen soils exhibited a rapid increasing trend with decreasing temperature, which was explained by the temperature-dependent ice morphology in the soil interpore. Furthermore, the findings also demonstrated a remarkable sensitivity in the electrical conductivity in response to the soil temperature during the frost heave process and the stress state under the loading or unloading path.
AB - The risk of geohazards associated with frozen subgrades is well recognized, but a comprehensive framework to evaluate frost susceptibility from microstructural characteristics to macroscopic thermo-hydro-mechanical (THM) behaviors has not been established. This study aims to propose a simple framework for quantitatively assessing frost susceptibility and compressibility in frozen soils. A systematic THM model was devised to predict heat transfer, soil freezing characteristics, and stress states in frozen soils. Constant freezing experiments and oedometer compression tests were performed on bentonite clays under varying temperatures (−5°C, −10°C, and −20°C) and stress levels to validate the proposed model. Additionally, soil electrical conductivity measurements were employed to assess the temperature- and stress-dependent volumetric and mechanical properties of frozen soils. The model used Fourier’s law to compute the transient soil temperature profile and estimated the volume change and stress states based on the soil freezing characteristic curve. Experimental results showed that frost heave of bentonite reached between 9.0% and 26.6% of axial strain, which was largely predicted by the proposed model. It also demonstrated that the frost heave was mainly attributed to the fusion of the porewater. Additionally, the preconsolidation pressure of frozen soils exhibited a rapid increasing trend with decreasing temperature, which was explained by the temperature-dependent ice morphology in the soil interpore. Furthermore, the findings also demonstrated a remarkable sensitivity in the electrical conductivity in response to the soil temperature during the frost heave process and the stress state under the loading or unloading path.
UR - http://www.scopus.com/inward/record.url?scp=85187944758&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85187944758&partnerID=8YFLogxK
U2 - 10.1177/03611981241234920
DO - 10.1177/03611981241234920
M3 - Article
SN - 0361-1981
JO - Transportation Research Record
JF - Transportation Research Record
ER -