Mono-STAR: Mono-Camera Scene-Level Tracking and Reconstruction

Haonan Chang, Dhruv Metha Ramesh, Shijie Geng, Yuqiu Gan, Abdeslam Boularias

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We present Mono-STAR, the first real-time 3D reconstruction system that simultaneously supports semantic fusion, fast motion tracking, non-rigid object deformation, and topological change under a unified framework. The proposed system solves a new optimization problem incorporating optical-flow-based 2D constraints to deal with fast motion and a novel semantic-aware deformation graph (SAD-graph) for handling topology change. We test the proposed system under various challenging scenes and demonstrate that it significantly outperforms existing state-of-the-art methods. Supplementary material, including videos, can be found at https://github.com/changhaonan/Mono-STAR-demo.

Original languageEnglish (US)
Title of host publicationProceedings - ICRA 2023
Subtitle of host publicationIEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages820-826
Number of pages7
ISBN (Electronic)9798350323658
DOIs
StatePublished - 2023
Event2023 IEEE International Conference on Robotics and Automation, ICRA 2023 - London, United Kingdom
Duration: May 29 2023Jun 2 2023

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2023-May

Conference

Conference2023 IEEE International Conference on Robotics and Automation, ICRA 2023
Country/TerritoryUnited Kingdom
CityLondon
Period5/29/236/2/23

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Mono-STAR: Mono-Camera Scene-Level Tracking and Reconstruction'. Together they form a unique fingerprint.

Cite this