Neuroprotective effect of NXP031 in the MPTP-induced Parkinson's disease model

Min Kyung Song, Joo Hee Lee, Jinil Kim, Ji Hyun Kim, Soonhye Hwang, Yoon Seong Kim, Youn Jung Kim

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Parkinson's disease (PD) is a neurodegenerative disease characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra (SN). Oxidative stress has been identified as one of the major causes of nigrostriatal degeneration in PD. Ascorbic acid plays a role as an efficient antioxidant to protect cells from free radical damage, but it is easily oxidized and loses its antioxidant activity. To overcome this limitation, we have recently developed NXP031, a single-stranded DNA aptamer that binds to ascorbic acid with excellent specificity, reducing its oxidation and increasing its efficacy. This study investigated the neuroprotective effects of NXP031 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model. Acute degeneration of nigral dopaminergic neurons was induced by four consecutive treatments of MPTP (20 mg/kg) in male C57BL/6 J mice. NXP031 (Vitamin C/Aptamin C 200 mg/4 mg/kg) was administered intraperitoneally for 5 days following MPTP. We observed that the administration of NXP031 ameliorated MPTP-induced loss of dopaminergic neurons in the SN and exhibited improvement of MPTP-mediated motor impairment. We further found that NXP031 increased plasma ascorbic acid levels and inhibited microglia activation-induced neuroinflammation in the SN, which might contribute to the protective effects of NXP031 on nigrostriatal degeneration. Our findings suggest that NXP031 could be a potential therapeutic intervention in PD.

Original languageEnglish (US)
Article number135425
JournalNeuroscience Letters
Volume740
DOIs
StatePublished - Jan 1 2021
Externally publishedYes

ASJC Scopus subject areas

  • Neuroscience(all)

Keywords

  • Aptamer
  • MPTP
  • NXP031
  • Neuroprotection
  • Parkinson's disease
  • Vitamin C

Fingerprint

Dive into the research topics of 'Neuroprotective effect of NXP031 in the MPTP-induced Parkinson's disease model'. Together they form a unique fingerprint.

Cite this