Novel ground-state crystals with controlled vacancy concentrations: From kagomé to honeycomb to stripes

Robert D. Batten, David A. Huse, Frank H. Stillinger, Salvatore Torquato

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


We introduce a one-parameter family, 0 ≤ H ≤ 1, of pair potential functions that stabilize a range of vacancy-riddled crystals as ground states. The "quintic potential" is a short-ranged, nonnegative pair potential with a single local minimum of height H at unit distance and which vanishes cubically at a distance of. We have developed this potential to produce ground states with the symmetry of the triangular lattice while favoring the presence of vacancies. After an exhaustive search using various optimization and simulation methods, we believe that we have determined the ground states for all pressures, densities, and 0 ≤ H ≤1. For specific areas below, the ground states of the "quintic potential" include high-density and low-density triangular lattices, kagomé and honeycomb crystals, and stripes. We find that these ground states are mechanically stable but are difficult to self-assemble in computer simulations without defects. For specific areas above, these systems have a ground-state phase diagram that corresponds to hard disks with radius. For the special case of H = 0, a broad range of ground states is available. Analysis of this case suggests that among many ground states, a high-density triangular lattice, low-density triangular lattice, and striped phases have the highest entropy for certain densities. The simplicity of this potential makes it an attractive candidate for experimental realization with application to the development of novel colloidal crystals or photonic materials.

Original languageAmerican English
Pages (from-to)6194-6204
Number of pages11
JournalSoft matter
Issue number13
StatePublished - Jul 7 2011

ASJC Scopus subject areas

  • General Chemistry
  • Condensed Matter Physics

Cite this