On Multilevel Picard Numerical Approximations for High-Dimensional Nonlinear Parabolic Partial Differential Equations and High-Dimensional Nonlinear Backward Stochastic Differential Equations

E. Weinan, Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse

Research output: Contribution to journalArticlepeer-review

14 Scopus citations


Parabolic partial differential equations (PDEs) and backward stochastic differential equations (BSDEs) are key ingredients in a number of models in physics and financial engineering. In particular, parabolic PDEs and BSDEs are fundamental tools in pricing and hedging models for financial derivatives. The PDEs and BSDEs appearing in such applications are often high-dimensional and nonlinear. Since explicit solutions of such PDEs and BSDEs are typically not available, it is a very active topic of research to solve such PDEs and BSDEs approximately. In the recent article (E et al., Multilevel Picard iterations for solving smooth semilinear parabolic heat equations, arXiv:1607.03295) we proposed a family of approximation methods based on Picard approximations and multilevel Monte Carlo methods and showed under suitable regularity assumptions on the exact solution of a semilinear heat equation that the computational complexity is bounded by O(dε-(4+δ)) for any δ∈ (0 , ∞) where d is the dimensionality of the problem and ε∈ (0 , ∞) is the prescribed accuracy. In this paper, we test the applicability of this algorithm on a variety of 100-dimensional nonlinear PDEs that arise in physics and finance by means of numerical simulations presenting approximation accuracy against runtime. The simulation results for many of these 100-dimensional example PDEs are very satisfactory in terms of both accuracy and speed. Moreover, we also provide a review of other approximation methods for nonlinear PDEs and BSDEs from the scientific literature.

Original languageAmerican English
Pages (from-to)1534-1571
Number of pages38
JournalJournal of Scientific Computing
Issue number3
StatePublished - Jun 15 2019

ASJC Scopus subject areas

  • Software
  • Theoretical Computer Science
  • Numerical Analysis
  • General Engineering
  • Computational Theory and Mathematics
  • Computational Mathematics
  • Applied Mathematics


  • Curse of dimensionality
  • High-dimensional PDEs
  • High-dimensional nonlinear BSDEs
  • Multilevel Monte Carlo method
  • Multilevel Picard approximations

Cite this