On parameterized complexity of the word search problem in the Baumslag-Gersten group

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We consider the word search problem in the Baumslag-Gersten group GB. We show that the parameterized complexity of this problem, where the area of van Kampen diagram serves as a parameter, is polynomial in the length of the input and the parameter. This contrasts the well-known result that the Dehn function and the time complexity of the word search problem in GB are non-elementary.

Original languageEnglish
Title of host publicationISSAC 2020 - Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation
EditorsAngelos Mantzaflaris
PublisherAssociation for Computing Machinery
Pages360-363
Number of pages4
ISBN (Electronic)9781450371001
DOIs
StatePublished - Jul 20 2020
Event45th International Symposium on Symbolic and Algebraic Computation, ISSAC 2020 - Kalamata, Virtual, Greece
Duration: Jul 20 2020Jul 23 2020

Publication series

NameProceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC

Conference

Conference45th International Symposium on Symbolic and Algebraic Computation, ISSAC 2020
Country/TerritoryGreece
CityKalamata, Virtual
Period7/20/207/23/20

ASJC Scopus subject areas

  • General Mathematics

Keywords

  • Baumslag-Gersten group
  • Baumslag-Solitar group
  • dehn function
  • fixed parameter tractability
  • parameterized complexity
  • word problem
  • word search problem

Fingerprint

Dive into the research topics of 'On parameterized complexity of the word search problem in the Baumslag-Gersten group'. Together they form a unique fingerprint.

Cite this