Abstract
In this paper, which continues our investigation of strong singularity formation in compressible fluids, we consider the compressible three-dimensional Navier-Stokes and Euler equations. In a suitable regime of barotropic laws, we construct a set of finite energy smooth initial data for which the corresponding solutions to both equations implode (with infinite density) at a later time at a point, and completely describe the associated formation of singularity. An essential step in the proof is the existence of (Formula Presented) smooth selfsimilar solutions to the compressible Euler equations for quantized values of the speed constructed in our companion paper (part I).
Original language | American English |
---|---|
Pages (from-to) | 779-889 |
Number of pages | 111 |
Journal | Annals of Mathematics |
Volume | 196 |
Issue number | 2 |
DOIs | |
State | Published - Sep 2022 |
ASJC Scopus subject areas
- Mathematics (miscellaneous)
Keywords
- Compressible fluids
- Singularity formation