Relative Cartier divisors and Laurent polynomial extensions

Vivek Sadhu, Charles Weibel

Research output: Contribution to journalArticle

Abstract

If i: A⊂ B is a commutative ring extension, we show that the group I(A, B) of invertible A-submodules of B is contracted in the sense of Bass, with LI(A,B)=Het0(A,i∗Z/Z). This gives a canonical decomposition for I(A[t,1t],B[t,1t]).

Original languageEnglish (US)
Pages (from-to)353-366
Number of pages14
JournalMathematische Zeitschrift
Volume285
Issue number1-2
DOIs
StatePublished - Feb 1 2017

Fingerprint

Canonical Decomposition
Laurent Polynomials
Commutative Ring
Invertible
Divisor

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

@article{769cae1451bb4c9d91c0421e9a9a9023,
title = "Relative Cartier divisors and Laurent polynomial extensions",
abstract = "If i: A⊂ B is a commutative ring extension, we show that the group I(A, B) of invertible A-submodules of B is contracted in the sense of Bass, with LI(A,B)=Het0(A,i∗Z/Z). This gives a canonical decomposition for I(A[t,1t],B[t,1t]).",
author = "Vivek Sadhu and Charles Weibel",
year = "2017",
month = "2",
day = "1",
doi = "https://doi.org/10.1007/s00209-016-1710-1",
language = "English (US)",
volume = "285",
pages = "353--366",
journal = "Mathematische Zeitschrift",
issn = "0025-5874",
publisher = "Springer New York",
number = "1-2",

}

Relative Cartier divisors and Laurent polynomial extensions. / Sadhu, Vivek; Weibel, Charles.

In: Mathematische Zeitschrift, Vol. 285, No. 1-2, 01.02.2017, p. 353-366.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Relative Cartier divisors and Laurent polynomial extensions

AU - Sadhu, Vivek

AU - Weibel, Charles

PY - 2017/2/1

Y1 - 2017/2/1

N2 - If i: A⊂ B is a commutative ring extension, we show that the group I(A, B) of invertible A-submodules of B is contracted in the sense of Bass, with LI(A,B)=Het0(A,i∗Z/Z). This gives a canonical decomposition for I(A[t,1t],B[t,1t]).

AB - If i: A⊂ B is a commutative ring extension, we show that the group I(A, B) of invertible A-submodules of B is contracted in the sense of Bass, with LI(A,B)=Het0(A,i∗Z/Z). This gives a canonical decomposition for I(A[t,1t],B[t,1t]).

UR - http://www.scopus.com/inward/record.url?scp=84975113102&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84975113102&partnerID=8YFLogxK

U2 - https://doi.org/10.1007/s00209-016-1710-1

DO - https://doi.org/10.1007/s00209-016-1710-1

M3 - Article

VL - 285

SP - 353

EP - 366

JO - Mathematische Zeitschrift

JF - Mathematische Zeitschrift

SN - 0025-5874

IS - 1-2

ER -