Rethinking knowledge graph propagation for zero-shot learning

Michael Kampffmeyer, Yinbo Chen, Xiaodan Liang, Hao Wang, Yujia Zhang, Eric P. Xing

Research output: Chapter in Book/Report/Conference proceedingConference contribution

48 Scopus citations

Abstract

Graph convolutional neural networks have recently shown great potential for the task of zero-shot learning. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, multi-layer architectures, which are required to propagate knowledge to distant nodes in the graph, dilute the knowledge by performing extensive Laplacian smoothing at each layer and thereby consequently decrease performance. In order to still enjoy the benefit brought by the graph structure while preventing dilution of knowledge from distant nodes, we propose a Dense Graph Propagation (DGP) module with carefully designed direct links among distant nodes. DGP allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants. A weighting scheme is further used to weigh their contribution depending on the distance to the node to improve information propagation in the graph. Combined with finetuning of the representations in a two-stage training approach our method outperforms state-of-the-art zero-shot learning approaches.

Original languageEnglish (US)
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PublisherIEEE Computer Society
Pages11479-11488
Number of pages10
ISBN (Electronic)9781728132938
DOIs
StatePublished - Jun 2019
Externally publishedYes
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
Duration: Jun 16 2019Jun 20 2019

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2019-June

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
Country/TerritoryUnited States
CityLong Beach
Period6/16/196/20/19

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Keywords

  • Categorization
  • Deep Learning
  • Recognition: Detection
  • Retrieval

Fingerprint

Dive into the research topics of 'Rethinking knowledge graph propagation for zero-shot learning'. Together they form a unique fingerprint.

Cite this