TY - GEN
T1 - Risk analysis of freight train collisions in the United States, 2000 to 2014
AU - Wang, Yanlei
AU - Xu, Shuang
AU - Liu, Xiang
N1 - Publisher Copyright: Copyright © 2016 by ASME.
PY - 2016
Y1 - 2016
N2 - Train accidents damage infrastructure and rolling stock, disrupt operations, and may result in casualties and environmental damage. While the majority of previous studies focused on the safety risks associated with train derailments or highway-rail grade crossing collisions, much less work has been undertaken to evaluate train collision risk. This paper develops a statistical risk analysis methodology for freighttrain collisions in the United States between 2000 and 2014. Negative binomial regression models are developed to estimate the frequency of freight-train collisions as a function of year and traffic volume by accident cause. Train collision severity, measured by the average number of railcars derailed, varied with accident cause. Train collision risk, defined as the product of collision frequency and severity, is predicted for 2015 to 2017, based on the 2000 to 2014 safety trend. The statistical procedures developed in this paper can be adapted to various other types of consequences, such as damage costs or casualties. Ultimately, this paper and its sequent studies aim to provide the railroad industry with data analytic tools to discover useful information from historical accidents so as to make risk-informed safety decisions.
AB - Train accidents damage infrastructure and rolling stock, disrupt operations, and may result in casualties and environmental damage. While the majority of previous studies focused on the safety risks associated with train derailments or highway-rail grade crossing collisions, much less work has been undertaken to evaluate train collision risk. This paper develops a statistical risk analysis methodology for freighttrain collisions in the United States between 2000 and 2014. Negative binomial regression models are developed to estimate the frequency of freight-train collisions as a function of year and traffic volume by accident cause. Train collision severity, measured by the average number of railcars derailed, varied with accident cause. Train collision risk, defined as the product of collision frequency and severity, is predicted for 2015 to 2017, based on the 2000 to 2014 safety trend. The statistical procedures developed in this paper can be adapted to various other types of consequences, such as damage costs or casualties. Ultimately, this paper and its sequent studies aim to provide the railroad industry with data analytic tools to discover useful information from historical accidents so as to make risk-informed safety decisions.
UR - http://www.scopus.com/inward/record.url?scp=84978906074&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84978906074&partnerID=8YFLogxK
U2 - https://doi.org/10.1115/JRC2016-5738
DO - https://doi.org/10.1115/JRC2016-5738
M3 - Conference contribution
T3 - 2016 Joint Rail Conference, JRC 2016
BT - 2016 Joint Rail Conference, JRC 2016
PB - American Society of Mechanical Engineers
T2 - 2016 Joint Rail Conference, JRC 2016
Y2 - 12 April 2016 through 15 April 2016
ER -