TY - JOUR
T1 - Seasonal surface ocean circulation and dynamics in the Philippine Archipelago region during 2004-2008
AU - Han, Weiqing
AU - Moore, Andrew M.
AU - Levin, Julia
AU - Zhang, Bin
AU - Arango, Hernan G.
AU - Curchitser, Enrique
AU - Di Lorenzo, Emanuele
AU - Gordon, Arnold L.
AU - Lin, Jialin
N1 - Funding Information: The QuikSCAT winds are produced by Remote Sensing Systems and sponsored by the NASA Ocean Vector Winds Science Team (OVWST). Tide data are obtained at http://www.coas.oregonstate.edu/research/po/research/tide/index.html . We thank Dr. J. Metzger and Harley Hurlburt for providing the global HYCOM solutions, which are used as initial and lateral boundary conditions to the ROMS. Appreciation also goes to Dr. Phil Mele for processing the PhilEx ADCP data. Weiqing Han is supported by ONR N00014-07-1-0413 and NASA Ocean Vector Wind Science Team 1283568. Julia Levin, Bin Zhang, Hernan Arango and Enrique Curchitser by ONR N00014-07-1-0417, Arnold L. Gordon by ONR N00014-06-1-0689, and Jialin Lin by the NASA Modeling, Analysis and Prediction (MAP) Program.
PY - 2009/6
Y1 - 2009/6
N2 - The dynamics of the seasonal surface circulation in the Philippine Archipelago (117°E-128°E, 0°N-14°N) are investigated using a high-resolution configuration of the Regional Ocean Modeling System (ROMS) for the period of January 2004-March 2008. Three experiments were performed to estimate the relative importance of local, remote and tidal forcing. On the annual mean, the circulation in the Sulu Sea shows inflow from the South China Sea at the Mindoro and Balabac Straits, outflow into the Sulawesi Sea at the Sibutu Passage, and cyclonic circulation in the southern basin. A strong jet with a maximum speed exceeding 100 cm s-1 forms in the northeast Sulu Sea where currents from the Mindoro and Tablas Straits converge. Within the Archipelago, strong westward currents in the Bohol Sea carry the surface water of the western Pacific (WP) from the Surigao Strait into the Sulu Sea via the Dipolog Strait. In the Sibuyan Sea, currents flow westward, which carry the surface water from the WP near the San Bernardino Strait into the Sulu Sea via the Tablas Strait. These surface currents exhibit strong variations or reversals from winter to summer. The cyclonic (anticyclonic) circulation during winter (summer) in the Sulu Sea and seasonally reversing currents within the Archipelago region during the peak of the winter (summer) monsoon result mainly from local wind forcing, while remote forcing dominates the current variations at the Mindoro Strait, western Sulu Sea and Sibutu passage before the monsoons reach their peaks. The temporal variations (with the mean removed), also referred to as anomalies, of volume transports in the upper 40 m at eight major Straits are caused predominantly by remote forcing, although local forcing can be large during sometime of a year. For example, at the Mindoro Strait, the correlation between the time series of transport anomalies due to total forcing (local, remote and tides) and that due only to the remote forcing is 0.81 above 95% significance, comparing to the correlation of 0.64 between the total and local forcing. Similarly, at the Sibutu Passage, the correlation is 0.96 for total versus remote effects, comparing to 0.53 for total versus local forcing. The standard deviations of transports from the total, remote and local effects are 0.59 Sv, 0.50 Sv, and 0.36 Sv, respectively, at the Mindoro Strait; and 1.21 Sv, 1.13 Sv, and 0.59 Sv at the Sibutu Passage. Nonlinear rectification of tides reduces the mean westward transports at the Surigao, San Bernardino and Dipolog Straits, and it also has non-negligible influence on the seasonal circulation in the Sulu Sea.
AB - The dynamics of the seasonal surface circulation in the Philippine Archipelago (117°E-128°E, 0°N-14°N) are investigated using a high-resolution configuration of the Regional Ocean Modeling System (ROMS) for the period of January 2004-March 2008. Three experiments were performed to estimate the relative importance of local, remote and tidal forcing. On the annual mean, the circulation in the Sulu Sea shows inflow from the South China Sea at the Mindoro and Balabac Straits, outflow into the Sulawesi Sea at the Sibutu Passage, and cyclonic circulation in the southern basin. A strong jet with a maximum speed exceeding 100 cm s-1 forms in the northeast Sulu Sea where currents from the Mindoro and Tablas Straits converge. Within the Archipelago, strong westward currents in the Bohol Sea carry the surface water of the western Pacific (WP) from the Surigao Strait into the Sulu Sea via the Dipolog Strait. In the Sibuyan Sea, currents flow westward, which carry the surface water from the WP near the San Bernardino Strait into the Sulu Sea via the Tablas Strait. These surface currents exhibit strong variations or reversals from winter to summer. The cyclonic (anticyclonic) circulation during winter (summer) in the Sulu Sea and seasonally reversing currents within the Archipelago region during the peak of the winter (summer) monsoon result mainly from local wind forcing, while remote forcing dominates the current variations at the Mindoro Strait, western Sulu Sea and Sibutu passage before the monsoons reach their peaks. The temporal variations (with the mean removed), also referred to as anomalies, of volume transports in the upper 40 m at eight major Straits are caused predominantly by remote forcing, although local forcing can be large during sometime of a year. For example, at the Mindoro Strait, the correlation between the time series of transport anomalies due to total forcing (local, remote and tides) and that due only to the remote forcing is 0.81 above 95% significance, comparing to the correlation of 0.64 between the total and local forcing. Similarly, at the Sibutu Passage, the correlation is 0.96 for total versus remote effects, comparing to 0.53 for total versus local forcing. The standard deviations of transports from the total, remote and local effects are 0.59 Sv, 0.50 Sv, and 0.36 Sv, respectively, at the Mindoro Strait; and 1.21 Sv, 1.13 Sv, and 0.59 Sv at the Sibutu Passage. Nonlinear rectification of tides reduces the mean westward transports at the Surigao, San Bernardino and Dipolog Straits, and it also has non-negligible influence on the seasonal circulation in the Sulu Sea.
KW - Circulation and dynamics
KW - Philippine Archipelago
KW - Straits
KW - Transport
UR - http://www.scopus.com/inward/record.url?scp=60849102429&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=60849102429&partnerID=8YFLogxK
U2 - https://doi.org/10.1016/j.dynatmoce.2008.10.007
DO - https://doi.org/10.1016/j.dynatmoce.2008.10.007
M3 - Article
SN - 0377-0265
VL - 47
SP - 114
EP - 137
JO - Dynamics of Atmospheres and Oceans
JF - Dynamics of Atmospheres and Oceans
IS - 1-3
ER -