TY - GEN
T1 - Shape deviation modeling for dimensional quality control in additive manufacturing
AU - Xu, Lijuan
AU - Huang, Qiang
AU - Sabbaghi, Arman
AU - Dasgupta, Tirthankar
PY - 2013
Y1 - 2013
N2 - Dimensional quality control is critical for wider adoption of Additive Manufacturing (AM) as a direct manufacturing technology. Due to the process' complex physics, AM-fabricated parts still require post-processing with machine tools, which significantly negates its time and cost benefits. In this paper, we investigate product shape deviation for Mask Image Projection Stereolithography (MIP-SLA) - one of the earliest commercialized AM techniques. By studying part fabrication mechanisms, we consider (i) over or under exposure, (ii) light blurring and (iii) phase change induced shrinkage or expansion as the most significant sources for shape deviations. Accordingly, the shape deviation modeling is established to quantify the effects of those influential factors and to understand the deviation mechanisms. Cylinders and cubes of various sizes were built to test our approach. Accurate prediction of shape deviation for all parts serves as a further confirmation of our model.
AB - Dimensional quality control is critical for wider adoption of Additive Manufacturing (AM) as a direct manufacturing technology. Due to the process' complex physics, AM-fabricated parts still require post-processing with machine tools, which significantly negates its time and cost benefits. In this paper, we investigate product shape deviation for Mask Image Projection Stereolithography (MIP-SLA) - one of the earliest commercialized AM techniques. By studying part fabrication mechanisms, we consider (i) over or under exposure, (ii) light blurring and (iii) phase change induced shrinkage or expansion as the most significant sources for shape deviations. Accordingly, the shape deviation modeling is established to quantify the effects of those influential factors and to understand the deviation mechanisms. Cylinders and cubes of various sizes were built to test our approach. Accurate prediction of shape deviation for all parts serves as a further confirmation of our model.
UR - http://www.scopus.com/inward/record.url?scp=84903459599&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84903459599&partnerID=8YFLogxK
U2 - 10.1115/IMECE2013-66329
DO - 10.1115/IMECE2013-66329
M3 - Conference contribution
SN - 9780791856185
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Advanced Manufacturing
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013
Y2 - 15 November 2013 through 21 November 2013
ER -