Abstract
Despite their importance in tissue homeostasis and renewal, human pituitary stem cells (PSCs) are incompletely characterized. We describe a human single nucleus RNA-seq and ATAC-seq resource from pediatric, adult, and aged postmortem pituitaries (snpituitaryatlas.princeton.edu) and characterize cell-type-specific gene expression and chromatin accessibility programs for all major pituitary cell lineages. We identify uncommitted PSCs, committing progenitor cells, and sex differences. Pseudotime trajectory analysis indicates that early-life PSCs are distinct from the other age groups. Linear modeling of same-cell multiome data identifies regulatory domain accessibility sites and transcription factors that are significantly associated with gene expression in PSCs compared with other cell types and within PSCs. We identify distinct deterministic mechanisms that contribute to heterogeneous marker expression within PSCs. These findings characterize human stem cell lineages and reveal diverse mechanisms regulating key PSC genes and cell type identity.
Original language | American English |
---|---|
Article number | 110467 |
Journal | Cell Reports |
Volume | 38 |
Issue number | 10 |
DOIs | |
State | Published - Mar 8 2022 |
ASJC Scopus subject areas
- General Biochemistry, Genetics and Molecular Biology
Keywords
- chromatin accessibility
- multiomics
- pituitary
- single nucleus analysis
- stem cells
- transcriptome