TY - GEN
T1 - Small-set expansion in shortcode graph and the 2-to-2 conjecture
AU - Barak, Boaz
AU - Kothari, Pravesh K.
AU - Steurer, David
N1 - Publisher Copyright: © Boaz Barak, Pravesh K. Kothari, and David Steurer.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Dinur, Khot, Kindler, Minzer and Safra (2016) recently showed that the (imperfect completeness variant of) Khot’s 2 to 2 games conjecture follows from a combinatorial hypothesis about the soundness of a certain “Grassmanian agreement tester”. In this work, we show that soundness of Grassmannian agreement tester follows from a conjecture we call the “Shortcode Expansion Hypothesis” characterizing the non-expanding sets of the degree-two Short code graph. We also show the latter conjecture is equivalent to a characterization of the non-expanding sets in the Grassman graph, as hypothesized by a follow-up paper of Dinur et al. (2017). Following our work, Khot, Minzer and Safra (2018) proved the “Shortcode Expansion Hypothesis”. Combining their proof with our result and the reduction of Dinur et al. (2016), completes the proof of the 2 to 2 conjecture with imperfect completeness. We believe that the Shortcode graph provides a useful view of both the hypothesis and the reduction, and might be suitable for obtaining new hardness reductions.
AB - Dinur, Khot, Kindler, Minzer and Safra (2016) recently showed that the (imperfect completeness variant of) Khot’s 2 to 2 games conjecture follows from a combinatorial hypothesis about the soundness of a certain “Grassmanian agreement tester”. In this work, we show that soundness of Grassmannian agreement tester follows from a conjecture we call the “Shortcode Expansion Hypothesis” characterizing the non-expanding sets of the degree-two Short code graph. We also show the latter conjecture is equivalent to a characterization of the non-expanding sets in the Grassman graph, as hypothesized by a follow-up paper of Dinur et al. (2017). Following our work, Khot, Minzer and Safra (2018) proved the “Shortcode Expansion Hypothesis”. Combining their proof with our result and the reduction of Dinur et al. (2016), completes the proof of the 2 to 2 conjecture with imperfect completeness. We believe that the Shortcode graph provides a useful view of both the hypothesis and the reduction, and might be suitable for obtaining new hardness reductions.
KW - Grassmann Graph
KW - Shortcode
KW - Small-Set Expansion
KW - Unique Games Conjecture
UR - http://www.scopus.com/inward/record.url?scp=85069442776&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85069442776&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ITCS.2019.9
DO - 10.4230/LIPIcs.ITCS.2019.9
M3 - Conference contribution
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 10th Innovations in Theoretical Computer Science, ITCS 2019
A2 - Blum, Avrim
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 10th Innovations in Theoretical Computer Science, ITCS 2019
Y2 - 10 January 2019 through 12 January 2019
ER -