Stochastic coordinate descent for 01 loss and its sensitivity to adversarial attacks

Meiyan Xie, Yunzhe Xue, Usman Roshan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

The 01 loss while hard to optimize is least sensitive to outliers compared to its continuous differentiable counterparts, namely hinge and logistic loss. Recently the 01 loss has been shown to be most robust compared to surrogate losses against corrupted labels which can be interpreted as adversarial attacks. Here we propose a stochastic coordinate descent heuristic for linear 01 loss classification. We implement and study our heuristic on real datasets from the UCI machine learning archive and find our method to be comparable to the support vector machine in accuracy and tractable in training time. We conjecture that the 01 loss may be harder to attack in a black box setting due to its non-continuity and infinite solution space. We train our linear classifier in a one-vs-one multi-class strategy on CIFAR10 and STL10 image benchmark datasets. In both cases we find our classifier to have the same accuracy as the linear support vector machine but more resilient to black box attacks. On CIFAR10 the linear support vector machine has 0% on adversarial examples while the 01 loss classifier hovers about 10%. On STL10 the linear support vector machine has 0% accuracy whereas 01 loss is at 10%. Our work here suggests that 01 loss may be more resilient to adversarial attacks than the hinge loss and further work is required.

Original languageAmerican English
Title of host publicationProceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019
EditorsM. Arif Wani, Taghi M. Khoshgoftaar, Dingding Wang, Huanjing Wang, Naeem Seliya
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages299-304
Number of pages6
ISBN (Electronic)9781728145495
DOIs
StatePublished - Dec 2019
Event18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019 - Boca Raton, United States
Duration: Dec 16 2019Dec 19 2019

Publication series

NameProceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019

Conference

Conference18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019
Country/TerritoryUnited States
CityBoca Raton
Period12/16/1912/19/19

ASJC Scopus subject areas

  • Strategy and Management
  • Artificial Intelligence
  • Computer Science Applications
  • Decision Sciences (miscellaneous)
  • Signal Processing
  • Media Technology

Keywords

  • 01 loss
  • Adversarial attacks
  • Stochastic coordinate descent

Fingerprint

Dive into the research topics of 'Stochastic coordinate descent for 01 loss and its sensitivity to adversarial attacks'. Together they form a unique fingerprint.

Cite this