Switching Attention in Time-Varying Environments via Bayesian Inference of Abstractions

Meghan Booker, Anirudha Majumdar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Motivated by the goal of endowing robots with a means for focusing attention in order to operate reliably in complex, uncertain, and time-varying environments, we consider how a robot can (i) determine which portions of its environment to pay attention to at any given point in time, (ii) infer changes in context (e.g., task or environment dynamics), and (iii) switch its attention accordingly. In this work, we tackle these questions by modeling context switches in a time-varying Markov decision process (MDP) framework. We utilize the theory of bisimulation-based state abstractions in order to synthesize mechanisms for paying attention to context-relevant information. We then present an algorithm based on Bayesian inference for detecting changes in the robot's context (task or environment dynamics) as it operates online, and use this to trigger switches between different abstraction-based attention mechanisms. Our approach is demonstrated on two examples: (i) an illustrative discrete-state tracking problem, and (ii) a continuous-state tracking problem implemented on a quadrupedal hardware platform. These examples demonstrate the ability of our approach to detect context switches online and robustly ignore task-irrelevant distractors by paying attention to context-relevant information.

Original languageAmerican English
Title of host publicationProceedings - ICRA 2023
Subtitle of host publicationIEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages10174-10180
Number of pages7
ISBN (Electronic)9798350323658
DOIs
StatePublished - 2023
Event2023 IEEE International Conference on Robotics and Automation, ICRA 2023 - London, United Kingdom
Duration: May 29 2023Jun 2 2023

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2023-May

Conference

Conference2023 IEEE International Conference on Robotics and Automation, ICRA 2023
Country/TerritoryUnited Kingdom
CityLondon
Period5/29/236/2/23

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Switching Attention in Time-Varying Environments via Bayesian Inference of Abstractions'. Together they form a unique fingerprint.

Cite this